
Real Time Systems  

Professor Durga Prasad Mohapatra 

Department of Computer Science and Engineering 

National Institute of Technology, Rourkela 

Lecture 33 

Static Allocation of Tasks 

Good afternoon to all of you. Now, today we will discuss about this static allocation of tasks. Last 

class we have discussed about the different classifications of allocation of tasks. One is static, 

another is dynamic. So, today we will mainly focus on the static allocation of these tasks.  

(Refer Slide Time: 0:00:39)  

 

So, basically today we will cover how the task allocation can be made, can be done in 

multiprocessor systems. Different static allocation techniques, such as utilization balancing 

algorithm, next fit algorithm, bin packing algorithm you will see, and under bin packing algorithm 

we will see a special algorithm called a first fit algorithm.  



(Refer Slide Time: 0:01:01)  

 

So, today the main keywords that will be used are RMA that is rate monotonic algorithm, EDF, 

earliest deadline fast, utilization balancing algorithm, next fit algorithm, bin packing algorithm, et 

cetera.  

(Refer Slide Time: 0:01:14)  

 

So, let us see about the first the difference between static priority or static allocation of static 

priority scheduling and dynamic priority scheduling then we will take up the individual static 

priority scheduling algorithms. So, in static allocation, how the allocation is made? The allocation 



is made before the run time. So, before the run time the allocation is made that is what happens 

that the tasks are pre-allocated to the processors.  

We know the details of the tasks, we know the details of the processors in advance, beforehand 

and accordingly the tasks are pre-allocated, they are allocated before the run time to the different 

processors, and this allocation it remains valid, throughout the full run of the system. It will not 

change. The allocation remains valid, that means which tasks is assigned to which processor. This 

allocation remains valid throughout the full run of the system.  

So, here each task is assigned a fixed priority. So, every task, it is assigned a fix priority and this 

priority does not change during its lifetime. So, normally these static allocation algorithms, they 

are centralized, we are using a centralized algorithm here, so basically the static algorithm, the 

static allocation algorithms are centralized in nature.  

So, one of the advantage of the static priority scheduling is that, there is no overhead, why? So, 

there are no overheads during run time as the tasks are permanently assigned to the processors. I 

have already told you here, the tasks are pre-allocated and this allocation, it remains valid, if this 

allocation does not change, these fixed priorities, it does not change during its lifetime. So, since 

the tasks are permanently assigned to the processors so there is no extra overhead during the run 

time. This is one of the advantages of static priority scheduling.  

(Refer Slide Time: 0:03:11)  

 



Now, which algorithms are coming under static priority or static allocation algorithms? The 

following algorithms will come under static allocation, like utilization balancing algorithm, next 

fit algorithm for RMA, bin packing algorithm for EDF. So, today we will discuss these three 

algorithms, but before that let us quickly see about the drawbacks or let us say the difference 

between static algorithm or static allocation algorithm and the dynamic allocation algorithm, then 

we will come back to these three static allocation algorithms.  

(Refer Slide Time: 0:03:47)  

 

So, let us compare how this dynamic priority scheduling it is different than the static priority 

scheduling or static allocation. You know that what problem we will suffer in case of static priority 

scheduling, normally we have to know in advance what are the tasks. The task details we have to 

know, but in several applications these tasks arrive sporadically at different nodes. Simultaneously 

we will see different tasks they are arriving.  

The tasks arrive sporadically at different nodes and hence the static algorithms they will not be 

fruitful, they will not be suitable for these types of tasks, so the need of having some dynamic 

scheduling algorithms. In case of dynamic priority scheduling or in case of the dynamic allocation 

how the tasks are assigned? The tasks are assigned to the processors as and when they arrive. So, 

as and when the task arrives, then each task will be assigned to the processors accordingly.  

So, here in dynamic allocation the tasks are assigned to the processors as an when they arrive, and 

this priority that is assigned to any task it may change during its lifetime. The priority assigned to 



a task during this dynamic priority scheduling, it may change during its lifetime, but in static 

allocation what we have seen? Once the priority is assigned to a task that cannot change. That will 

remain throughout the lifetime.  

But in dynamic priority scheduling, the priority, once assigned to a task, it may change during its 

lifetime, this is one of the differences between the static allocation algorithms. Here the task 

allocation to the different nodes is made based on what? Based on the instantaneous load position 

of other nodes.  

So, other nodes you can consider was other computers or other processors. The nodes may be 

considered as the other processors. So, the task allocation to the nodes, how it will be met. The 

task allocation to the nodes is made on, is made based on the instantaneous load position of other 

loads, that means each node, it has to know what is the node position of the other nodes.  

Based on that the tasks will be assigned. So, here we will take examples, here the task allocation 

will be made based on the instantaneous load position of other nodes, what is the load position at 

other processors, at other nodes, based on that the task allocation to the current node will be met.  

(Refer Slide Time: 0:06:21)  

 



 

So, in this dynamic scheduling or this dynamic allocation algorithm one assumption we are taking 

that any task can be executed on any processor. There is no restriction. Any task, it can be executed 

in any processor. Now, let us say the advantages of this dynamic scheduling. So, advantage is that 

the utilization is better than these static approaches. Why?  

Because the task allocation is made based on the instantaneous load position of the other nodes. 

So, since every node, what is the instantaneous node position of other nodes, so it is expected that 

the utilization in case of the dynamic algorithms, that will be better than the static approaches and 

also usually the allocation, this dynamic allocation algorithms are distributed in nature.  

We have seen in case of static allocation, the static allocation algorithms are centralized in nature, 

whereas usually, most of the times many of the dynamic allocation algorithms, they are distributed 

in nature. Let us go to the drawbacks of dynamic scheduling. So, these dynamic allocation 

algorithms they incur high run time over it, why?  

Because the allocator, it has to keep track of the instantaneous load position at every other node. 

So, since the allocator, it has to keep the track of the load position at other nodes, before making, 

before allocating a task to a particular node, the allocator has to know what is the load position, 

what is the instantaneous load position at the other nodes. Then only it will, whether it will take a 

decision whether the task will be allocated to the current node or not.  



So, due to this keeping of the track of the instantaneous load position at every other node, so 

dynamic allocation algorithms they incur high run time overhead. So, another disadvantage is that 

if the tasks are bound to a single processor. So, what tasks they will be assigned, or the tasks those 

will be allocated. If those tasks are bound to a single processor or a subset of processors, then what 

will happen? The dynamic allocation would be ineffective. Here the dynamic allocation will not 

be so much effective, rather we should go for may be the static allocation.  

(Refer Slide Time: 0:08:36) 

 

So, what algorithms are coming under this dynamic allocation? So, two important allocation we 

will discuss under dynamic allocation. One the focus addressing and bidding algorithm, another is 

the buddy strategy algorithm, or simply we can say that buddy algorithm. So, these two things we 

will see under this one.  



(Refer Slide Time: 0:08:55)  

 

Now, let us see first about this utilization balancing algorithm. Now, I am migrating or moving to 

the first discussing the static allocation algorithms. So, the first static allocation algorithm, the 

simplest static allocation algorithm is the utilization balancing algorithm. So, here these algorithms 

they attempt to balance the processor utilization.  

So, in these algorithms they try to allocate the tasks in such a way that the processor utilization 

will be balanced. So, these algorithms they attempt to balance the processor utilization that means 

the processor utilization at the different nodes, it will be balanced. So, not that one processor will 

get very highly utilization and another processor will be very negligible utilization. These things 

should not occur. 

So, all the processors, they will, their utilization will be balanced. So, these algorithms attempt to 

balance the processor utilization, then these algorithms what do they do, they maintain the task in 

the queue. So, how the task allocation is made in utilization balancing algorithm? First step, so 

these algorithms, they maintain a queue. They maintain the task in the queue, in which order? In 

increasing order of their utilization.  

So, first this algorithm, it what puts all these tasks in a queue, in the increasing order of their 

utilizations, then what it does, it gradually, it removes the task one by one. In the second step this 

utilization balancing algorithm, it removes the task one by one from where? From the head of the 

queue and then it allocates. How it allocates?  



It allocates these tasks to what? To the lowest utilized processor. So, each time it will remove one 

task from the head of the queue, then it will try to find out which processor is having lowest 

utilization, then this algorithm, it will allocate, this task to the lowest utilized processor with this 

very simple algorithm. So, always this algorithm will try to extract, to remove the tasks one by one 

from the head and then it will find out which processor is lowest utilized and it will allocate the 

task to that lowest utilized processor.  

But if you will see at a perfectly balanced system, in case of a perfectly balanced system the 

utilization ui at a particular processor, normally it should be equal to the overall utilization or the 

average utilization which you denote as u bar, but usually you will see, this is very much difficult 

to make equal this overall utilization, and with this utilization ui at a particular processor. So, in 

this, usually in these utilization balancing algorithms, these overall utilizations may not be equal 

to the utilization, the individual utilization or the utilization ui are the easy processor. It is very 

much difficult to get it. it is very much difficult to make the overall utilization equal with the 

utilization for each of these processors.  

(Refer Slide Time: 0:12:15)  

 



 

So, what should be objective of any good utilization balancing algorithm? The objective of any 

good utilization balancing algorithm, should be, how to minimize these differences between this 

overall utilization and the utilization at an individual processor i, so then you can take the 

summation because we have to consider all the processors and we have to minimize this. 

Because as I have already told you that normally that normally this ū != ui for each processor. So, 

that is why what our objective should be? Our objective should be to minimize this difference. So, 

the objective of any good utilization balancing is to minimize this difference ū- ui for all processors.  

Then you will take the summations, suppose there are n processors so take this value, like  

  

∑(ū − 𝑢𝑖

𝑛

𝑛=1

) 

and your objective should be to minimize this value. So, let us say when utilization balancing 

algorithm will be suitable. So, utilization balancing algorithm is suitable when the number of 

processors in a multiprocessor is fixed. So, when the number of processors, we know in advance, 

and the number of processors in a multiprocessor is fixed, say n = 10, there are only 10 number of 

processors. So, in those case utilization balancing algorithm is very much suitable. Similarly, when 

it is used, so this utilization balancing algorithm is used when the tasks in the individual processors 

are scheduled using EDF. So, when the tasks in the individual processors they can be scheduled 

or they are scheduled using this EDF, earliest deadline first, in those case utilization balancing 



algorithm is normally used. So, this is about utilization balancing algorithm. The simplest static 

allocation algorithm.  

(Refer Slide Time: 0:14:08)  

 

 

Now, we will go to the next one. The next one is this next fit algorithm. And normally that is used 

for RMA. We have already seen that utilization balancing algorithm is used when the individual 

processors, when the tasks in individual processors are scheduled using EDF, but when we will 

see another next algorithm, this next fit algorithm. That is normally used for RMA.  



Let us first say that already we have seen this utilization balancing algorithm. So, there is a 

utilization based allocation heuristics which can be used in conjunction with RMA. So, because 

this utilization balancing we have seen. Normally this is used when the tasks in individual 

processors they are scheduled using EDF.  

Similarly, there is also a utilization based allocation heuristics, which can be used in conjunction 

with RMA and in this next fit algorithm how the tasks are allocated, let us say, so first a task set is 

partitioned, a task set is partitioned in to a number of classes. So, that each partition is scheduled 

on a unique processor using RMA.  

So, first a task set is partitioned into a number of classes so that each partition. It can be scheduled 

on a uni processor using RMA and this algorithm, next fit algorithm it tries to attempt to use as 

few processors as possible. So, next fit algorithm it attempts to use as less processors as possible. 

So, let us see one of the difference between the utilization balancing that we have discussed now 

on the next fit algorithm.  

Unlike utilization balancing algorithm, this next fit algorithm it does not require the number of 

processors of the system to be predetermined and given beforehand. So, we have seen in case of 

utilization balancing algorithm, we have to know the number of processors in advance, because 

the number of processor is fixed but in next fit algorithm, this algorithm does not require the 

number of processors of the system to be predetermined, to be known and it should be given 

beforehand that this requirement is not there in case of next fit algorithm.  

So, let us see how does this algorithm works. So, first I have already told you, this algorithm 

classifies the different task or a given task set into a few classes, based on what? Based on the 

utilization of the task, this next fit algorithm, it categorizes the different task into a few classes. 

Based on what? Based on the utilization of the tasks.  



(Refer Slide Time: 0:16:42)  

 

So, some of the assumptions that will be used in next fit algorithm are as follows, like the 

multiprocessor consist of identical processor. So, the multiprocessor system we are discussing or 

that will be in use. The multiprocessor system, it will consist of identical processors and the tasks, 

they will be allocated, these tasks require no resources other than processor time. So, the tasks will 

require only processor's time as the resources. No other resources will be required by the tasks. 

These are the two assumptions we will use for the nest fit algorithm.  

(Refer Slide Time: 0:17:13)  

 



Now, let us see in detail how does this work. One or more processors are assigned exclusively to 

each class of task. So, here in next fit algorithm, after classifying the tasks into a number of classes, 

what we will do? We will do the followings. One or more processors, they are assigned exclusively 

to each class of the task. So, after categorizing or after classifying the task set in to a number of 

classes, then we have to assign one or more processors to each of the class of the task.  

Now, what is the essence of this algorithm? The essence of the algorithm is that the task with 

similar utilization, they are allocated to the same processor. The objective of the algorithm, the 

essence of the algorithm is that the task having similar utilization, they are allocated towards, they 

are allocated to the same processor. Now, let us see how this allocation will be met.  

Now, if the tasks are to be divided into m classes, suppose we want to divide the task set into m 

number of classes, then how to decide a task will belong to which class? A task belongs to class j, 

a task will belong to class j if and only if the following formula holds good. What is the formula?  

2
(

1
𝑗+1

)
<  

𝑒𝑖

𝑝𝑖
≤ (2

1
𝑗 − 1) 

 So, if we have, you want to divide the given task set into m classes then the task may belong to 

class j, if and only if the following equation holds good. I have already told you the classification 

of the task will be made based on the utilization.  

And here you can see, here utilization they are ei/pi is nothing but the ui, you have already known, 

utilization is equal to ei/pi  where e i is the execution time of task i and p i is the period of task i, 

and you have already known that the value of j will lie between 0 to m where m is the number of 

classes we want to divide the task set into.  

So, we require that the task set will be divided into m classes so I am repeating again, this is very 

much important, because the classes will be defined based on this utilization bound. So, if the tasks 

are to be divided into m classes then a task will belong to class j where j lies between 0 and m if 

and only if the following condition holds.  

So, if we will do, it will assign the classes like this or if a task will belong to the class using this 

formula, this given formula then this will define the utilization grid for various classes. Let us see 

how this, we can get a graph like, we will call our utilization grid for the various classes.  



(Refer Slide Time: 0:20:43)  

 

 

Now, what I will do, first suppose, no I am explaining this formula that we have used. Suppose, 

let us say that we want to divide a class into, a task set into four classes. So, please remember that 

j should be greater than 3. So, I have taken here now the value of m is equal to 4, so that means I 

require that the task should be divided into four classes. 

Now, let us see, what would be bounds, what will the utilization bounds for those four classes. So, 

number 1, let a task set is to be partitioned into four classes, then we will have four, what four 

classes, class 1, class 2, class 3, class 4, for class 1 where I will get the value? You can go here. In 

this equation put the value of j is equal to 1, because this is the first class.  



So, the bound it will say, it will simplify this thing, then you can say that the utilization will lie in 

between two values. So, what are the two values? The left hand side value will be 0.41 and right 

hand side value is 1. I have already shown you.  

Put just the value of 1 here, right hand side, obviously it is becoming 1, because 21 -1, it is 1. 

Similarly, the left hand side of this equation it will be 0.41, so that means if we will use this 

equation the utilization bound for class 1 will lie in the range 0.41 to 1. Similarly, put the value of 

j = 2 in the equation. You will find out the utilization bound for class 2 that will between 0.26 to 

0.41. Put the value of j = 3 in this equation, then you can see the utilization bound for class 3 will 

be 0.19 to 0.26. And put the value of j = 4, you can see that the value of the utilization bounds will 

lie in between 0 to 0.19.  

So, in this way we have seen the utilization bounds for these different four classes. Now, what we 

can do? We can view the above expression as, so this given expression. Now, we can put in the 

form of a graph, because the values for the four classes we have already shown you, and let us see 

how does it look like.  

It will look like this. There are only four classes, you can look at, there are four classes. I have 

divided them by putting three blue color lines. So, you can view the above expression here as 

defining as the grids on the utilization plot of the tasks, which is shown in the above figure. You 

can see this is just looking like a utilization plot of the task. Or you can say that this is the, this 

graph looks like the grids on the utilization plot of the task. And there are four tasks, four classes 

and hence you can see there are four regions I have shown separated by the three blue colored 

lines.  



(Refer Slide Time: 0:24:02)  

 

 

So, one observation you can make from this graph is that. And you can observe that the size of the 

grids at higher task utilization values are normally coarser compared to that at low utilization 

values. I am repeating again, you can observe that the size of the grids at higher task utilization. 

Higher task utilization where it is you can see at class 1 it is higher utilization because it lies 

between 0.41 to 1, and lowest is coming to be 0 and 0.19, so class 4.  

So, here you can see that the size of the grids are the higher task utilization values, they are 

normally coarser compared to what? Compared to that at the low task utilization values, and now 



the important thing I have left that is how the task will be assigned. So, a task is assigned to agreed 

depending on what? Depending on the utilization.  

So, we have seen this is the grid structure a task will be assigned to the grid, a task will be assigned 

to a grid, depending on what? Depending on its utilization, and this I have already told you that 

the size of the grids, you can look at the graph, you can see that the size of the grids at higher task 

utilization value they are normally coarser as compared to that of the task, that are the low task 

utilization values.  

For example, you can see class 1 task, how it is coarser? This range is, how much you can see, it 

is 0.41 to 1. So, that means its coarser is 1 minus 0.41, that is coming to be 0.59. So, grid size of 

class 1 tasks are how much it is 0.59, but if we will come to the class 3 task, then you can see how, 

what value, the grid size, 0.26 minus 0.19, it is coming to be 0.07.  

So, we can conclude that the size of the grids are at higher task utilization values. Normally they 

are coarser as compared to that at the low task utilization values. So, then you will see about its 

performance. The simulation studies shows that, the next fit algorithm it requires at most 2.34 

times the optimum number of processors. So, this algorithm, it requires, so if optimum number of 

processor required is x then next fit algorithm requires 2.34 x times the optimum number of 

processors. Regarding performance we can say that, the simulation studies show that the next fit 

algorithm requires utmost 2.34 times of the optimum number of processors. Now, we will take 

quickly a small example and illustrate how does it work.  



(Refer Slide Time: 0:26:32)  

 

So, the example is like this. the following table, it shows the execution time of 11 tasks, and this 

execution time is in millisecond and of a set up, it is actually a typing mistake it should not be 10, 

it should be 11, 11 periodic real times tasks are there, you can see in the below table, there are 11 

periodic tasks and suppose the tasks there need to run on a multiprocessor, with four processors. 

So, in your multiprocessor system there are four processors there. No, I think, let us see, there 

might be again a typing mistake here you will see.  

(Refer Slide Time: 0:27:06)  

 



 

 

So, now we have to, what is the problem? Problem is allocate the task using the next fit algorithm, 

assume that the individual processors are to be scheduled using RMA, because I have already told 

you next fit algorithm will work for this RMA so assume that the individual processors are to be 

scheduled using RMA.  

The solution I have made very simple. First what I have done? I have this, e i is giving execution 

time, p i is also given. First what I have to do? I have to find out the value of e i / p i, that is 

utilization, find out the value of u i, which is equal to e i / p i. So, every case I have found out like 

5 by 10 is 0.5, 7 by 21 is 0.31, like that found out the u i. 



Then I have to find out what? It will belong to which class, and then next find out that interval, so 

suppose for example task 1, what is the value of utilization 0.5, so which class it will fit in. let us 

see. 0.5, obviously it will fit to class 1, because class 1, for class 1 grid size the value lies in between 

0.41 to 1.  

So, since for the first task it is 0.5, so obviously it will fit in to which class? Class 1, because 0.5 

lies in between 0.41 to 1. Similarly find out for task 2, which class it will belong to, 0.33. 0.33 is 

coming where? You can see 0.33 it lies in between 0.36 to 0.41, which is in class 2. So, this T2 

will belong to class 2.  

Like this you assign, you divide the task into some classes. So, how many task are there, we have 

done? We have seen that these 11 tasks are now divided into four classes. So, now we are having 

four classes. So, this is divided into four classes. Class 1, class 4 and I have shown which task will 

belong to which class, that I have shown in this table. Now, we will do what? We will find out 

which task will be assigned to which processor how to do it? Now, let us see.  

(Refer Slide Time: 0:29:06)  

 



 

So, let us start by here marking one processor for each class. Now, it may be noted that, so first 

will go toward T1, first will go to T1. So, T1 you can see easily it belongs to class 1 and class 1 

utilization is 0.5, no problem. So, it will be assigned to processor 1. So, T1 is assigned to processor 

1.  

Next T2 it will belong to which class? It is class 2, what is the utilization, 0.33. Please remember 

for RMA the maximum utilization can be 1, this is the necessary condition and there is a sufficient 

condition for RMA, that formula you should remember that is n to, the utilization should be less 

than n into 2 to the power n minus 1, that you must have read earlier.  

So, here, now for T2, which class is there? Its utilization 0.33, so I can assign it to processor 2, no 

problem. Now, when we will come to T3, T3 is in where? It is in class 4. So, class 4 means it will 

be assigned to processor 4, no problem. Similarly, T4 it is class 4 so I can assign to processor 4. 

So, now what is the utilization of processor 4? so 0.14 plus 0.04, that means how much? 0.18. So, 

no problem. We can go ahead.  

Now, coming to T5. T5 belongs to which class? Class 2. So, for class 2 I have to use processor 2 

and what is the utilization of this class 2. It is now 0.33, again now 0.33, that is 0.66. It is okay, 

less than 1. No problem. So, T5 can also be assigned to processor 2. that I have shown here. So, 

T2, T5, they can also be assigned to processor 2. Similarly, it will go ahead.  



Now, let us go to next, T3. T3 I have already told you it will be assigned to processor 4. T4 to 

processor 4. T5 I have already told you processor 2. Now, let us come to T6, this is a problem. T6 

you will assign to which one? Class 2. Class 2 means we are using processor 2, but by this time 

let us see what is the utilization. So, already for class 2 utilization is how much? 0.33, this is T2, 

next is T5, is 0.33, that means 0.66.  

Now, if I will assign again T6 to that processor the utilization will be how much? 0.66 plus 0.4, 

that means it will be greater than 1. So, I cannot assign T6 to processor 2, because it will not satisfy 

the schedulability criteria for RMA and hence these three tasks T2, T5, T6, this task set, it is not 

RMA scheduleable, it will not be RMA scheduleable on the same processor.  

What is the processor? P2. So, I will be forced to assign T6 to one new processor. So, T6 is assigned 

to an additional processor. Not P6 I am sorry this will be P5, I am sorry this should be P5. So, this 

P5. So, T6 is assigned to P5, because already I am having P1, P2, P3, P4 for the four classes. So, 

not T6 will be assigned to the next processor P five. 

So, similarly you see the other. Next is T7. T7, it will go to what? Class 4. Till now what is the 

utilization of this class 4? That means 0.14 plus 0.04 that is 0.18 and this 0.02, that means 0.2. 

again less than 1, no problem. Similarly, T8 can be assigned again to P4, Because this 0.2 plus 

0.05, 0.25, still possible.  

Then T9, so 0.25 plus 0.13, because again this is class 4. It is again 0.38, again less than 1 and 

T10, again 0.15, so still it is there RMA scheduleable because they are not exceeding the maximum 

utilization. So, hence they can be assigned it to, which one? They can be assigned it to those all 

the tasks, which tasks? T3, T4, T7, T8, T9, T10, they all can be assigned to P4, because the total 

utilization is not exceeding the maximum utilization, and T11 it is the obvious, it is 3, so this is 

assigned to processor 3. In this way the different tasks are assigned to the different processors. So, 

this is how the next fit algorithm, it works. So, let us quickly we will finish the bin packing 

algorithm for EDF.  



(Refer Slide Time: 0:33:46)  

 

So, this algorithm attempts to allocate tasks to the processors so that the tasks on individual 

processors are scheduled using EDF. So, this algorithm, it allocates the task tot he processors so 

that the task on the individual processors, they can be scheduled using EDF. This means that the 

task which are to be assigned to the processors, they will be assigned in such a way that the 

utilization at any processor does not exceed 1 and the advantage is that the processors, so now let 

us see this is we are saying bin packing, so what do you mean by bin here, what will you consider 

bin? So, processors are regarded as bins of a given capacity and the tasks, they are regarded as the 

items with different weights which need to be packed into the bins. So, bins means the processors 

are treated at the bins and the tasks are treated as the items. 



(Refer Slide Time: 0:34:32)  

 

So, the bin packing normally it is NP complete problem, we will quickly discuss two bin packing 

algorithms, first fit random algorithm and first decreasing algorithm.  

(Refer Slide Time: 0:34:41)  

 

In bin packing algorithm the problem is like this. We have to schedule a set of periodic independent 

pre-emptible tasks on a multiprocessor system, consisting of identical processors and the task 

deadlines here normally equal to their periods and I have already told you that one assumption. 

The only resource required is the processor time. So, other than the processor time, the task, they 

do not require any other resources.  



(Refer Slide Time: 0:35:08)  

 

And the solution is that, so EDF scheduling, we have to schedule the tasks on a processor using 

EDF. You know that EDF scheduling, for EDF scheduling on a processor that if U < 1, the 

utilization < 1 then you will see that the task set is assigned to that processor. It means the task set 

is scheduleable on the processor, and the problem, it reduces to making the task assignments to 

processors with the property that U < 1. The total utilization should be < 1.  

(Refer Slide Time: 0:35:39)  

 

We will quickly see that the first fit random algorithm, here the tasks are selected randomly. That 

is why the name is first fit random algorithm. So, here the tasks, they are selected randomly and 



they are assigned to the processors arbitrarily, again the tasks are assigned to the processors 

randomly or arbitrarily, as long as the utilization of the processor does not exceed here.  

So, till or as long as the utilization of a processor is not exceeding 1 randomly you can assign the 

task to those processors, it is very simple, that is why the name is first fit random algorithm, and 

simulation is also that that regarding its performance it is said that the followings, simulation is 

also that at most 1.7 times the optimum number of processors are required. So, if in optimum 

number of, if the optimum number of processors required is x, then first fit random algorithm it 

will require 1.7 x times of the processor. So, it will require at most 1.7 times the optimum number 

of processors.  

(Refer Slide Time: 0:36:40)  

 



 

Then next is first fit decreasing algorithm. So, as its name suggests, first fit decreasing algorithm, 

here the tasks are sorted in non-increasing order, maybe in the decreasing order of their CPU 

utilization, in an ordered list. That means what we can say? The task with the highest utilization is 

assigned the first position and so on.  

Then what will happen, then the tasks are selected one by one from the ordered list, please select 

the tasks or extract the tasks one by one from the ordered list. Then you assign the task to the bins. 

You assign the tasks you have extracted, the tasks you have removed, the tasks you have removed 

you assign them, you assign it to the bin, bin means to the processor to which it can fit in.  

And how can we know whether it can fit in or not? We can add the task, we can assign the task as 

long as the utilization does not exceed 1, and another thing is that how can assign the task? We 

can assign the task to the processor to which it fits first. So, we have to assign the task to the 

processor in such way that it should fit the first.  

So, assign the processor. Assign to processor or assign the task to the processor to which it fits 

first and similarly they are adding the performance, the simulation shows that the number of 

processors required is 1.22 times the optimal number of the processors. So, first fit random 

algorithm requires 1.7 times the optimum number of processors, whereas first fit decreasing 

algorithm requires 1.22 times the optimal number of processors.  

(Refer Slide Time: 0:38:11)  



 

So, we will quickly take a small example. Suppose there are n T tasks to be assigned, first we have 

to prepare a sorted list L of the tasks. So, their utilization, so that their utilizations, they are in 

decreasing order. Utilization means you know e i / p i, so 11 tasks are given. Their execution times 

and periods are given. I have computed u i as using the formula e i / p i so these are the u i 

utilizations.  

(Refer Slide Time: 0:38:41)  

 



 

And then what we have done? We have ordered them, how? In the decreasing order. So, first will 

must come, what? You can say 0.5, this is T1. After that which one will come, you can say that 

next will come T6. This is the utilization, we have arranged the utilization. First one is T1, then 

the utilization we have already computed here.  

Next one is T6, because after 0.5, then I have to put 0.4. T6, then it is T2, this is 0.33, and in case 

of tie, 0.33, 0.33 any one you can put early. So, like this I have created this ordered list, and then 

to which processor I will assign, first one. 0.5 I can assign to P1, processor 1, and what is this, 

what utilization, total utilization by this point 0.5, no problem.  

Then second task T6, again assigned to P1, because 0.5 plus 0.4 is 0.9, still less than 1, no problem, 

but while T2 will come I cannot add that this T2 to P1, because 0.9 plus 0.33 it will be greater than 

1, so I have to add a new processor P2. Like that, T5, again I can, I assign to P2, because the total 

utilization is now 0.66. T11 also can be assigned to P2, because the total utilization is 0.88.  

But T10 cannot be assigned to P2, because if you will add 0.88, with 0.18, it will be greater than 

1. So, I have to use another processor P3. But T3, T9, they can be assigned to P3, because this 

value is less 0.45 is less than 1. So, when T8 will come, 0.06, please see I am using first fit, I have 

to see 0.06, now it can be assigned to the first processor, because P1, it is utilization is 0.9, it can 

accommodate. I can add 0.06, still it is 0.96, less than 1, no problem. So, T8 can be assigned to P1.  



And while coming to T4, so it is 0.04, so add 0.96 plus 0.04, it is exactly 1, still it can be assigned 

to P1, but the other T7, I cannot assign to P1, because it is already 1. let us see it can be assigned 

to P2, yes, it is 0.88, add 0.02, it will be 0.9, which is less than 1. So, it can be assigned to P2, like 

this. in this way we can apply first fit decreasing algorithm for allocating the tasks.  

(Refer Slide Time: 0:41:06)  

 

So, today I have discussed the task allocation in multiprocessor systems, we have explained the 

static allocation algorithms such as my utilization balancing algorithm, next fit algorithm for RMA, 

bin packing algorithm for EDF and two special cases of bin packing algorithm, we have seen first 

fit random algorithm and first fit decreasing algorithm, with the examples. We have seen their 

performances, their simulation results we have also seen. For each of the algorithm we have seen 

their performances. 



(Refer Slide Time: 0:41:34)  

 

We have taken from these books, the contents what we have discussed today. These two books we 

have used. Thank you very much. 


