
Real Time Systems

Professor Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Lecture 32

Introduction to Multiprocessor and Distributed Systems

Good afternoon to all of you. Hope you have already learned the basic concepts of Real Time

Systems, various scheduling techniques, then this scheduling in presence of task dependencies, et

c. in the earlier classes. So, this class will take up a new chapter that is how to perform task

scheduling in multiprocessor and distributed environment.

(Refer Slide Time: 00:49)

We will first see, what concepts we will cover in this class, we will first look at the classification

of the computers, because you will see, you have to use the concept of multiprocessor systems

and distributed systems. So, that is why I want to give a brief classification of the computers,

then little bit about multiprocessor and distributed systems. Then we will see some brief ideas

about the scheduling problem in the multiprocessor and distributed environment and finally we

will look at, very briefly, on the concept of the optimal schedulers. We will see about the optimal

schedulers.

(Refer Slide Time: 01:29)

So, let us just start with the keywords that we will use in this lecture. We will use UMA versus

NUMA, then distributed systems, multiprocessor systems, real time distributed systems, optimal

schedulers. These keywords we will use in this lecture.

(Refer Slide Time: 0:01:48)

We will start with the initial concept. That means first we will start with a broad classifications

of the computers. Why? Because this lecture is, or this module is specifically dedicated towards

real time task or real time scheduling in multiprocessor and distributed system. So, I think it will

be helpful for you if I will cover the broad classification of computers.

So, normally we will discuss here two important broad classifications of the computers. One the

shared memory multiprocessors and the other one are the distributed memory computers. So,

after discussing those fundamental concepts, we will see how this real time task scheduling can

be done in this multiprocessor environment as well as this distributed environment.

The shared memory multiprocessors, they are also known as uniform memory access, UMA

computers and the distributed memory computers they are also called NUMA computers that

means non-uniform memory access. Also, these examples if we will see which are coming under

NUMA, distributed shared memory, clusters, grids, etc., they all are coming under distributed

memory computers.

(Refer Slide Time: 03:01)

Let us look at the architectures of UMA versus NUMA, how they differ. In UMA model what is

happening, so one main memory is there and this memory is shared among several processors,

P1, P2, Pn and these are different processors, each one having individual cache. So, they are

connected with a bus and here this latency is of the order of 100s of nanoseconds, in case of

UMA model.

Let us see how that is different in case of NUMA. So, as its name suggest, non-uniform memory

access here, instead of having one memory as in case it is happening in UMA here multiple main

memories are there, they are connected through network and each processor is having a separate

cache, and each cache in turn they are connected to individual main memories.

Here the latency is of the order of several milliseconds to seconds. So, this is how the UMA

computers, they are different from NUMA computers, and these concepts we will use while

scheduling the task in real times systems, are both, in case of multiprocessor systems, as well as

these distributed systems.

(Refer Slide Time: 04:16)

So, let us now look at about, so this distributed system. Distributed system is a system which

consisted of several nodes, and here nodes will refer to obviously computers. So, these nodes,

they communicate through a network and these nodes, they may be heterogeneous, they may be

homogeneous, no problem, so here nodes, they could be also heterogeneous. So, all those nodes

they are connected through a network we call as WAN, wide area network.

(Refer Slide Time: 04:45)

In distributed memory computers let us say how it works. The distributed computers they use

message passing model that means, as here I already told you that the nodes, they communicate

through a network so in distributed memory computers these distributed computers, they use a

message passing model for passing messages among the nodes or among the computers.

So, there are explicit instructions known as send and receive. So, explicit message send and

message receive instructions, they are written by the programmer for message passing among the

computers. So, what does this send instruction will do? This send instruction, it will specify the

local buffer, plus the receiving process IDs or the remote computer addresses. So, send

instruction will perform this.

What this receive instruction will do? This receive instruction it will specify how the sending

process on the remote computers and the local buffer to place the data. This will be carried out

by this receive instructions. So, in this way the programmers, they explicitly write message send

instructions and message receive instructions to perform the following activities.

(Refer Slide Time: 06:08)

Then let us quickly look at the advantages of the message passing communication. This is quite

easy, you can redo yourself. Like hardware for communication and synchronization are

becoming much simpler nowadays. So, in comparison to communication in the shared memory

model, so it is becoming simpler, which one? Hardware for communication and synchronization.

They are becoming simpler as compared to the communication in a shared memory model. This

is the number one advantage.

Then explicit communication. So, here we are using much simpler programs which help to

reduce maintenance and development cost. So, this explicit communication, this we are using

very simple programs, we are writing, the programmers write very simple programs to achieve

explicit communications. This helps reduce the maintenance and the development cost.

Then synchronization is implicit. So, no explicit synchronization is required. Here the

synchronization is implicit. It is associated with sending and receiving the different messages.

So, these are some of the advantages of the message passing communication.

(Refer Slide Time: 07:12)

So, inspite of these advantages there are several disadvantages also of the message passing

communication. Here the programmer has to explicitly write the message passing constructs,

also he has to precisely identify the processes or the threats you can say, the processes are also

known as threats.

The programmer has to also precisely identify the processes with which the communication has

to occur. Obviously here the programmer is making explicit calls to a program operating system.

The programmer has to make explicit calls to the operating system. So, which ultimately, what

incurs higher overhead. So, these are some of the disadvantages of the message passing

communication.

(Refer Slide Time: 08:00)

Now let us move towards our real time aspects. So, why real time distributed system is at all

required? Previously we have seen real time system in a uniprocessor system also, so why real

time distributed system at all required. These are some of the reasons high real time distributed

systems are required.

The applications themselves they are distributed in nature. Now, that you say the modern day

applications they are themselves distributed in nature. So, we have to use a real time distributed

system in order to handle those modern days application. For example, you take the command

and control systems. Air traffic control for where the flights are running. So, air traffic control, et

c. These are some of the examples of what modern day applications which are by default, by

nature they are distributed. So, we have to use real time distributed system.

Similarly, another example you can say that this, where these refineries or mining there, what

locations, there you need a distributed all over India or even all over the world. So, they are

communicated through networks, these are also good examples of distributed systems. So, in

order to handle the transactions in those cases also we require real time distributed systems.

Similarly, if we will use real time systems, the performance will be much higher, why? Because

the whole work, the total work will be distributed among multiple nodes or multiple computers

which relate to high performance. We will get high performance if we use real time distributed

systems.

Similarly, another achievement we will get, that is high availability, why? Because no single

point fieldwork. In the traditional system when only one processor we are using, if that is failed

due to some reason then you lose the data, the whole process will be stopped, but here, since you

are using multiple number of what computers, multiple number of nodes, even if one node fails,

no problem. The load will be shared by other nodes. The other nodes will take care of the

responsibility.

So, the whole system, it will not be stopped. So, there will be high availability of the data and we

will say that it will be having much more, what, it will have a better fault-tolerance ability,

because a single point failure will not what affect the system. The whole responsibility will be

now taken up by the other computers or by the other nodes. These are some of the reasons why

real time distributed systems, nowadays it is required.

(Refer Slide Time: 10:39)

But it has also some problems. So, distributed systems they have also some problems, like

efficient resource management is difficult. If you are using only one processor, managing the

resources is quite easy, but if you are using multiple numbers of nodes in distributed systems you

know there are several nodes that are connected among, with this network.

So, if you are using distributed systems, managing the resources efficiently is a difficult task,

because we do not have global knowledge of the work load. What is the total work load? How

much work load is assigned to which processor, we do not have those information. No global

knowledge of the work load is available. So, that is why efficient resource management is

becoming quite difficult in case of distributed systems.

Similarly, synchronized clocks difficult to implement, if you are using one system, one

processor, one computer sure we do not require synchronization of the clocks, but if you are

using multiple clocks, multiple nodes distributed at different locations, we have to synchronize

their clocks and in a distributed systems, synchronizing clocks is very much difficult.

This is another difficulty and third problem is communication problems. So, since these different

nodes of the computers they are connected through network there is every possibility that some

packets might be lost during the transmission. Or some packets they will be delivered but by that

time they are delivered they will be just, what, they will lose their value.

Out of order delivery of packets, they will be delivering too late by that time, they do not carry

any, they will not carry any importance, they lost their significance, they already lost, so it will

lead to some communication problems, so in distributed systems some communication problems

might arise due to loss of packets, due to out of order delivery of the packets.

Similarly, another problem is that difficult to identify the intermittent node of the link failures.

So, when the intermittent nodes or the links they fail, it is very much difficult to track and it is

very much difficult to identify, which intermittent node or which intermittent link it has failed,

very much difficult to identify. As a result the whole communication will be stopped, so which

are some of the problems, which might be occurring, which might be what happening, which

might occur in distributed systems. So, we have seen the advantages and the disadvantages of the

distributed systems.

(Refer Slide Time: 13:11)

Now, we will come to the real time aspects. The real time system model you will look at here.

So, we will see the simplest model for this real time system. Here the tasks they arrive at each

node and these tasks are independent of the other nodes. So, in our real time system model we

will assume that the task, the task arrival at each node, they are independent of other nodes, that

means if there are three nodes, node 1, node 2, node 3, which task is arriving at node 1.

Suppose task A is arriving at node 1, task B is arriving at node 2 and task C is arriving at node 3,

so these task arrivals are these different nodes, they are independent of each other. Each node has

also a resource manager. So, every computer, every node has a resource manager. So, this

resource manager what it will do, it will manage the workload at the local node and it handles a

migration of workload to other nodes.

So, the job of the resource manager which is present at each node is to manage the workload at

that local node and it will also handle the migration of workload, the migration of the job, the

migration of the task from one node to other nodes. The nodes cooperate among themselves for

meeting task deadlines. So, since there are multiple nodes, these nodes, they must cooperate

among themselves for what, why they should cooperate? They should cooperate so that the

different tasks, they can meet their deadlines. So, the different nodes they must cooperate among

themselves for meeting the deadlines of the tasks.

(Refer Slide Time: 14:51)

Now, let us see what assumptions we will take in this real time system model. So, first

assumption, so the task set we are considering it is a mixture of period and aperiodic task. The

task set that we are considering in this real time system. So, they are mixture of periodic and

aperiodic task.

The task, they usually have a specific precedence constraints, resource and fault-tolerance

requirements. So, each task that we are considering, so one assumption is that the tasks usually

have specific precedence constraints. What is the precedence constraint, which task will arrive

before which task, like that.

The resource constraints, what resources are available, the resource requirements and fault

tolerance requirements. First should be the level of the fault-tolerance that must be satisfied, that

must be required. So, every task, it must usually have a specific precedence constraints, resource

and fault-tolerance requirements.

So, next assumption is that the message transmission time are assumed to be constant and bound.

So, the message in order to transmit the message from one to another node it will definitely take

some time. These message transmission times, we assume that these message transmission times,

they are constant and they are bounded, they do not change.

(Refer Slide Time: 16:10)

Now, let us quickly look at the classification of the task scheduling solutions. So, broadly there

are two types of scheduling solutions, here we will discuss. One is static, another is dynamic. In

static scheduling solution what do we do? The tasks are statically assigned to processors, we are

discussing multiprocessor systems. So, here, these tasks, suppose there are 10 tasks, these tasks

are statically assigned to processors, so before this first we will assign the tasks to the processors,

statically and which tasks, how many tasks will be assigned to which processor that is pre-

decided.

In dynamic scheduling solutions what is happening? The processor which would execute a task

is dynamically decided. In this case which processor would execute which task that is not

statically decided, as in case of static techniques. In static techniques the tasks are statically

assigned to the processors. We know which processor will execute which task in advance, but in

dynamic scheduling the processor, a processor will execute which task, it is not pre-decided, it is

dynamically decided. So, which processor will execute which task it is dynamically decided.

These are the difference between the static scheduling techniques and the dynamic scheduling

techniques.

(Refer Slide Time: 17:36)

Another scheduling technique we will say local scheduling. Here a resource manager is

associated with each node. Every computer, every node is associated with a resource manager. I

have already told you what is the function of resource manager in the earlier slides, and this

resource manager may be used for the task scheduling and the load transfer, etc. Here the

emphasis is on the task scheduling and load transfer.

Then global scheduling, here a single scheduler it handles balance load across the nodes. So, here

in global scheduling we will use a single scheduler and this single scheduler will handle the

balancing of the loads, across what? Across the different nodes. And here we use a specific

transfer policy, so you have to use a particular transfer policy. So, these are the different

classifications of the task scheduling solutions.

(Refer Slide Time: 18:28)

Now, we will look at the distributed task scheduling, we will just briefly look, an insight we will

see into the distributed task scheduling. So, almost all the multiprocessor and the distributed real

time systems built today, they use static scheduling techniques, static scheduling solutions, I

have already told you what is static scheduling solution.

So, till now what multiprocessor systems are what, distributed real time systems you are

observing or which are available to date, till now. They normally use the static scheduling

solution. Why? Because they are very simple, easy to develop. But the dynamic scheduling

solutions they are much more complex, they also involve very high overheads, they require much

more time to develop. So, that is why, almost all the multiprocessor and the distributed real time

systems are developed so far, they use the static scheduling techniques.

(Refer Slide Time: 19:27)

Now, let us see, what you mean by the scheduling problem in case of the multiprocessor or what

distributed system. So, normally the scheduling problem, actually it consists of two separate

problems. What are the two separate problems? Number one the task assignment problem,

number two, the task scheduling problem.

Let us see what do you mean by task assignment problem? Task assignment problem means,

how to assign the tasks to processors. There are say 10 tasks but available only 5 processors. So,

how will we assign the 10 tasks to the 5 processors? So, here task assignment problem is we

have to divide the method so that we can effectively, efficiently assign the different tasks to the

processors.

Then what do you mean by scheduling problems? How to schedule the tasks on the processor to

which it has been assigned. To first what we are doing, we are first assigning the different tasks

to the processors. Say I have already told you there are five processors P1 to P5. There are 10

tasks T1 to T10. How to decide which task will be assigned to which processor.

I mean which tasks you will assign to processor 1, which tasks will you assign to processor 2,

which tasks will you assign to processor 5, like that. This is the first step. Then in the second step

what we are doing? We are deciding how to schedule the task on the processor, to which it has

been assigned.

Suppose P5 gets say two tasks, then how to schedule those tasks, like P5 suppose gets T3 and

T4. Now we have to decide how to schedule the task on the processors. So, P5 it will execute say

T3 and T4. Which one will execute it fast? First T3 will execute it or T4 will be executed or how,

or you can little bit enhance. Suppose more number of tasks is there. Say 15 tasks and 5

processors.

And in the first step what we are doing in task assignment problem? We are dividing these 15

tasks, we are assigning the 15 tasks among the 5 processors. Now coming to the second step

what are doing, we have to schedule the task on the processor to which it has been assigned.

Supposed this processor P5 it has been assigned task T1, T2, T3.

Now in the second step, that means in the scheduling problem we have to decide, we have to

schedule the task in such a way that these tasks will be executed efficiently on the assigned

processors P5, that means whether we will first assign T1 or T2 or T3, in which sequence. We

have to assign, we have to execute the task in the processor so that they can, the utilization can

be maximum. So, how to assign the different tasks, how to prepare this schedule, how to prepare

the sequence of execution of the task on the processor, say here processor P5, to which it has

been assigned so that maybe the utilization will be efficient, the utilization will be maximum.

(Refer Slide Time: 22:38)

Then we will see about these optimal schedulers I hope in this, while discussing about the

scheduling, you have must have known the terms optimal schedulers, efficient schedulers

proficient schedulers, those definitions you just have known earlier. So, here we will see about

little bit basic concept of the optimal schedulers. So, there are optimal schedulers for uni

processors systems, you have already seen. They can be, while you have already learned in the

earlier classes on the optimal schedulers for uniprocessors, you might have seen there are two

important types of optimal schedulers. One is the static scheduler; another is the dynamic

schedulers for the uniprocessors.

The example of what a static scheduler, you have seen for uniprocessors, it is RMA, which

stands for Rate Monotonic Algorithm another is the dynamic. The dynamic scheduler for the uni

processor, the example is EDF that is the earliest deadline first. I hope in the earlier classes you

have already seen the details of RMA and EDF and the variations of RMA and EDF. Now the

complexity is also we have already seen for RMA and EDF. So, you know that the complexity

for RMA normally it is linear, while complexity of EDF is of the order of log n. So, I again what

advice you to see these details of RMA and their variations and EDF and their variations along

with their complexities advantages disadvantages. The cases where they can be applied.

Please see those things in detail from any book or from the slides. So, you have also known

earlier that normally real time tasks scheduling in case of uniprocessor systems is quite easy. It is

quite simple, but in case of this real time task scheduling in multiprocessor systems or distributed

systems it is NP hard. I hope what is NP hard, NP complete you have already known earlier. So,

I want to conclude that the real time task scheduling in multiprocessor or distributed systems is

NP hard in nature.

(Refer Slide Time: 24:57)

So, today let us say what we have discussed? We have discussed so far the broad classification of

computers. There I have already explained you the differences between UMA and the NUMA

computers. Then we have also explained the concept of the real time distributed systems. Why

real time distributed systems are required I have already told you.

The advantages of real time distributed systems I have already told you. Also, we have presented

the classification of the different task scheduling solutions in the distributed systems. For

example the static, dynamic and global scheduling solutions, we have already told you earlier. I

have also explained the concept of task scheduling problem. I have already told you, that this

task scheduling problem consists of two separate problems.

One is the task assignment problem, where the emphasis is on how to assign the task to the

processors and the second problem is scheduling problem where the emphasis is on how to

schedule the different tasks on the particular processor to which it had been assigned so that also

we have seen regarding the scheduling problem.

We have also briefly discussed the concept of the optimal schedulers. I have already told you

that for you uniprocessor systems you have seen different types optimal schedulers or static

schedulers and dynamic and examples of static you have seen, static scheduler is RMA and

example of dynamic scheduler that we have already seen, for uniprocessors systems. I am again

repeating this is for uniprocessor systems.

For uniprocessor systems, for the dynamic scheduler you have already the EDF, and the time

complexity also you have known that for RMA it is of the, it is linear, whereas for EDF it is of

the order of log n, but real time scheduling in case of multiprocessor and distributed systems, it is

NP hard in nature. So, these things we have discussed in today's class. Next class we will discuss

about the particular types of these task scheduling techniques, for multiprocessor systems. So,

maybe we will, if I will start with next class we will discuss about this static testing. We will

discuss about this static scheduling.

So, on the static scheduling next class we will discuss three important techniques, we will see for

static scheduling of task in multiprocessor systems, one is in, what, uniform, what, scheduling

then next fit scheduling and bin packing scheduling, so those are coming under the static

scheduling techniques for multiprocessor systems, those static testing techniques we will discuss

in the next class and after that we will see the available dynamic scheduling techniques for

multiprocessor systems. So, that we will discuss maybe after one class.

(Refer Slide Time: 28:06)

This is for today, and all those concepts, these contents I have taken from this Rajib Mall's book

on real time systems, written by Professor Rajib Mall of IIT Kharagpur. This book was published

by Pearson Education. Also some of the important concepts we have taken from this real time

systems book by C. M. Krishna and K. G. Shin, published by Tata McGraw-Hill, so you may

refer these books. You may also refer some additional materials from internet or so and like this,

so if any doubt you can post it. So, this is what we have discussed today. Thank you very much

for your patienceful hearing.

