
Real Time System

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 31

Analysis of Priority Ceiling Protocol

Welcome to this lecture. In the last lecture, we were discussing about the priority ceiling

protocol. It is the protocol which is a bit sophisticated compared to the simple priority

inheritance protocol and the highest locker protocol and we were trying to do some analysis of

the various types of inversions that can occur.

Because if we are able to analyse what is the maximum inversion that a task can suffer under a

PCP that is a priority ceiling protocol, we can use the completion time theorem to check whether

the task set remains schedulable, the task set can meet their deadlines under the resource sharing

with priority ceiling protocol. So, let us proceed from there, we will look at different types of

inversions that can occur under priority ceiling protocol and we will try to get a upper bound on

the priority inversion time for each of the tasks.

(Refer Slide Time: 01:35)

Let us, proceed from there. So, in the priority ceiling protocol we know that that besides the

direct inversion, where a task high priority task is waiting for a low priority task holding

resource, we can have inheritance related inversion. In the inheritance related inversion, a low

priority task is holding the resource. So, there is a resource and a low priority task is holding the

resource.

And a high priority task is waiting for the resource and in this situation, in the priority ceiling

protocol the priority inheritance principle applies where the task TL gets the priority of TH, so

TL’s priority becomes equal to the priority of TH. Now, let us say TL is having high priority starts

executing, but what about a task TI which is an intermediate priority task, it needs no resource.

But simply because TL is executing at a high priority TI gets blocked it suffers inversion.

So, that we call is the inheritance related inversion suffered by TI because TL's priority has got

increased on the other hand TI does not need any resource. So, when low priority task TL holding

a resource high priority task waiting for it, several other tasks which have higher priority than TL

are all blocked for the duration that TL holds the resource R and TL’s priority is equal to TH and

they suffer inversions.

(Refer Slide Time: 03:46)

So, this is an illustration of that low priority task holding the resource high priority task waiting

for the resource low priority tasks priority is increased by the inheritance clause of the priority

ceiling protocol and therefore the intermediate priority task TI which do not need the resource

here they suffer inversions and we call this as inheritance related inversion.

(Refer Slide Time: 04:20)

Now, let us do a small analysis here. Let us, assume that tasks have been arranged in decreasing

order of their priority T1 is the highest priority task and T6 is the lowest priority task and the

resource usage by various tasks is shown here with the dotted line and the time maximum time

for which they need the resource is annotated here on the dotted line.

Now, let us find out which tasks are going to suffer from inheritance related inversion, can T1

suffer inheritance related inversion? No, T1 cannot suffer inheritance related inversion, because

for R2 unless T1 is waiting for it, then T4’s priority will not increase and similar is T2. So, if T1 is

already waiting for resource, so, that will be direct inversion, it is not inheritance related

inversion. But what about T2?

Now, T2 can suffer inheritance related inversion, the situation is that T4 holding R2 and T1

waiting for the resource and T1 cannot proceed T2 and T3 cannot proceed with their execution

because T4 priority has become equal to T1 and what is the maximum duration for which T2 and

T3 will undergo inheritance inversion on account of R2. So, that is 5 units.

So, both T2 and T3 will incur 5 units of inheritance related inversion on account of T4 when T1

waits for R2. So, that is a worst case. Now, what about T3 can it suffer any other inversion, can it

suffer inheritance inversion other than due to T4? Yes, it can suffer inheritance inversion due to

T6. When T6 is holding the resource R3 and T2 is waiting for it then T6 priority will become T2

and T3 cannot execute it will undergo 8 units of inversion on account of T6.

What about T4? Yes, T4 can also undergo inversion account of T6 for 8 units. What about T5?

Yes, it can also undergo inversion on account of T6 per 8 units. But can T5 undergo inversion on

account of T4? No, because T4 is a higher priority task than T5 and we do not call it a inversion.

It is a normal execution that T4 is executing T5 is waiting that is not an inversion.

Inversion is suffered by from a lower priority task T5 suffers inversion from T6, T4 suffers

inversion from T6, T3 suffers inversion from T4 and T6 that is for 5 and 8 units and T2 suffers

from T4. So, these are the inheritance related inversion here.

(Refer Slide Time: 08:20)

Now, let us try to understand the avoidance related inversion. In the avoidance related inversion

when a low priority task holds the resource the current system ceiling is made equal to the

ceiling priority of the resource. And now, the situation is that we have a low priority task which

is holding a resource CR and therefore, let us say R is also used some time or other by TH then

TL’s priority becomes equal to TH.

Now, when TL locks R the ceiling priority becomes TH as soon as TL locks R the current system

ceiling is set to TH this is by the resource grant clause of the PCP and now when CSC becomes

TH then there intermediate task might want to access some resource R2 which is not needed by TL

or TH and then it cannot because TI is less than CSC. So, in this case, we say that it undergoes

avoidance related inversion in the clause the resource grant rule.

Even though the resource is free, it is denied. Because this is the clause that prevent deadlock

avoidance. We call it as avoidance related inversion. This is also called as a priority ceiling

related or deadlock avoidance related inversion.

(Refer Slide Time: 10:31)

Now, let us try to do a small analysis. This example first and then we will do the analysis. So, a

low priority task is holding the resource CR1 and it so happens that the ceiling of CR1 is very

high priority is equal to 1 and as soon as TL gets CR1, the current system selling is set to 1 and

the high priority task TH whose priority is 2 started to execute, because TL’s priority has not yet

changed, its executing a TL only TL maybe T10.

And TH whose priority is 2 can easily preempt TL and starts executing, but then after some time

CR2 is needed by TH and when TH tries to lock CR2 in the resource grant clause the priority of TH

is compared to the current system ceiling and it happens to be less than the current system ceiling

and TH is denied access to CR2 and TH blocks and this we call as the avoidance related inversion

suffered by TH.

(Refer Slide Time: 11:54)

Now, let us do a small bit of analysis and try to identify the avoidance related inversions. What

about T1 can T1 undergo avoid insulated inversion? Yes, when T4 is holding R2 the current

system ceiling is set to 1 that is the priority of T1 and when T1 tries to acquire R1 it will not be

permitted it will be denied access to R1 and what is the maximum avoidance related inversion

suffered by T1 that is 5 unit and that is on account of T4.

Now, similarly, when T2 is holding R1 and T1 accesses R2 it will undergo 2 units of inversion

avoidance related inversion on account of T2. But what about T2 can it undergo avoidance related

inversion? Yes, when T4 is holding R2 T2 while trying to lock either R3 or R1 will be prevented

locking it. Because the ceiling the current system ceiling would have been set to 1.

So, what is the duration for which T2 can suffer inversion avoidance related inversion due to T4 it

will be 5 units. So, T2 will suffer 5 units of avoidance related inversion due to T4, can T2 suffer

avoidance related inversion due to T6? Yes, when T6 is holding R3 T2 is trying to access R1 it will

undergo inheritance related inversion, sorry, avoidance related inversion for 8 units.

So, on account of T6 it will undergo 8 units of avoidance related inversion. But what about T3?

T3 will not undergo any avoidance related inversion because T3 does not need any resource.

What about T4? Yes, T4 will undergo avoidance related inversion due to T6 when T4 requests R2

it will denied, because T6 is holding R3 and then it will undergo 8 units of inversion on account

of T6. What about T5?

No it cannot undergo avoidance related inversion because it does not need any resource. What

about T6? T6 is the lowest priority task; it does not suffer any inversion any type of inversion T6

does not incur.

(Refer Slide Time: 15:35)

Now, let us look at one simple theorem related to avoidance related inversion in the ceiling

protocol the tasks are single blocking under the ceiling protocol. So, here because of the

avoidance clause here, the current system ceiling is set to the priority ceiling priority of the

resource and therefore once a task acquires a resource all other resources that it needs must be

free, because of the avoidance clause that is current system ceiling is compared with the priority

of the task needing a resource.

And the corollary is that under the priority ceiling protocol a task can undergo at most 1 priority

inversion. So, it can block only once because once it blocks and gets one resource, it will be all

other resources will be available and also the current system ceiling is set to high value and

therefore, other tasks cannot acquire any resource and therefore, it suffers at most one priority

inversion.

(Refer Slide Time: 17:12)

Now, why is the priority ceiling protocol deadlock free that is very simple to see here that any

task once it gets one resource all other resources are free. It can get them anytime and there is no

question of a deadlock all the requirements of a task can be met under the priority ceiling

protocol once it gets one resource all other resources are free, it can lock them anytime.

(Refer Slide Time: 17:48)

Now, how about the unbounded priority inversion? How is it avoided in the priority ceiling

protocol? In the priority ceiling protocol and normally an unbounded priority inversion occurs

when a task is holding a resource a high priority task is waiting for it and the intermediate

priority tasks they keep on executing and preempting TL. But here due to the inheritance clause

unbounded priority inversion is avoided because TL’s priority is raised to that of the TH. So, the

inheritance clause prevents any unbounded priority inversion.

(Refer Slide Time: 18:45)

And how is the chain blocking avoided? Chain blocking is avoided because once a task gets any

one resource all other resources must be free and therefore, a task is single blocking and there

cannot be any chain blocking.

(Refer Slide Time: 19:07)

Now, let us do a small analysis of the priority ceiling protocol to determine. what is the

maximum priority inversion time per task?

(Refer Slide Time: 19:22)

Let us, consider this task graph. Here again, T1 is the highest priority, the tasks have been sorted

and T6 is the lowest priority and the resource requirement are represented here. The resources are

rectangles, R1, R2, R3 and the dotted lines are the access to the resource and the maximum time

for which a task access as a resource is annotated here.

Now, let us do first direct inversion. Now, does T1 suffer any direct inversion? Yes, it can suffer

direct inversion due to T2 and T3 because T2 might have locked R1 and when T1 requires it will

not get it. So, the direct inversion here, what is the maximum duration for on account of T2 is 2

units here. On account of T3 it is 8 units here.

What about T2 does it incur any direct inversion? Yes, it can incur direct inversion on account T3

and that is for 8 units can T3 incur any direct inversion it cannot incur direct inversion, it cannot

suffer direct inversion on account of T1 T2. Because they are higher priority tasks, task can suffer

inversion only on account of a lower priority task.

So, T3 can incur inversion on T4 for 1 unit, what about T4? T4 can incur inversion on account of

T6 for 8 units, T5 does not need any resource it cannot incur any direct inversion and T6 does not

suffer any inversion at all because it is the lowest priority task and see that the inversion is an

upper triangular matrix, even for the other cases, the inheritance and the avoidance inversion we

will see that it is an upper triangular matrix.

So, what is the reason behind this, that it is upper triangular matrix? The reason is that a task

does not suffer inversion on account of a lower priority task T3 cannot suffer inversion on

account of T1 because T1 is a high priority task. A task suffers inversion only on account of

lower priority task it does not suffer inversion from higher priority task and that is why the lower

triangular part of the matrix is empty. It is the upper triangular matrix.

(Refer Slide Time: 22:34)

Now let us try to analyse the inheritance related inversion. So, here can T1 have any inheritance

related inversion? No, because it is the highest priority task and the other tasks will block, will

inherit priority only T1 blocks further. What about T2? T2 can suffer inheritance related inversion

an account of T3 when T3 is holding R1 and T1 is waiting for R1 the priority of T3 becomes 1 and

then T2 cannot execute.

So, what is the maximum duration for which T2 can suffer inheritance inversion is 8 units. Now,

what about T3? T3 does not suffer any inheritance related inversion. What about T4? T4 also does

not incur any inheritance related inversion. What about T5? T5 can suffer inheritance related

inversion when T6 is holding R3 and T4 is waiting for it and it can suffer 8 units of inversion on

account of T6. So, only 2 tasks can suffer inheritance related inversion.

(Refer Slide Time: 24:16)

What about avoidance related inversion? This is the task graph here. Now, can T1 suffer

avoidance related inversion? Yes, T1 can suffer avoidance related inversion on account of T4,

when T4 is well holding R2 T1 cannot get R1. And what is the maximum duration? 5, can T1

undergo avoidance related inversion on account of T2?

Yes, when T2 is holding R1 T1 cannot lock R2 and what is the maximum duration that it can

undergo avoidance related inversion on account of T2 is 2 units. Now, what about T2? T2 can

undergo avoidance inversion on account of T4. When T4 is holding R2 T2 cannot lock R1 So, T2

can undergo inversion for 5 units and it can also undergo 8 units of inversion on account of T6

because when T6 is holding R3 T2 cannot lock R1.

And what about T3? T3 does not undergo any avoidance related inversion because it does not

need any resource. What about T4? Yes, T4 can undergo inversion on account of T6 for 8 units

and that is it, T5 does not need any resource it will not undergo an inversion. Similarly, T6 is the

lowest priority task it does not undergo any inversion and again it is a upper triangular matrix.

(Refer Slide Time: 26:32)

So, it is upper triangular matrix because the task does not suffer any inversion due to higher

priority tasks.

(Refer Slide Time: 26:42)

What is the maximum inversion for a task? It can undergo at best one inversion either due to

direct inheritance or avoidance and therefore, to compute the maximum inversion time we must

check for a specific task the rows in all the 3 tables that is the direct inversion table inheritance

inversion table and avoidance inversion table and pick the maximum entry there and that is the

maximum time for which a task can undergo inversion.

(Refer Slide Time: 27:22)

So, we have completed our discussion on the worst case inversion being suffered by a task on

account of the priority ceiling protocol we can even do analysis on similar lines using the priority

inheritance protocol and the highest locker protocol. So, these discussions are there in the real

time systems book authored by me and also on Liu and Krishna and Shin. So, we are at the end

of the lecture. Thank you.

