
Real Time System

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture: 28

Highest Locker Protocol (HLP)

Welcome to this lecture, we have so far in the last few classes examining how resource sharing

among real time tasks can be supported. The traditional operating system solution of

semaphores can cause tasks to miss their deadlines because of the unbounded priority

inversions. So, that is a major problem that needs to be addressed when we let tasks share

resources. And we were looking at the basic priority inheritance mechanism.

(Refer Slide Time: 01:02)

Now, let us proceed from there we had discussed the basic priority inheritance mechanism and

we found that the solution is simple, it overcomes unbounded priority inversion, if we use the

priority inheritance scheme, then unbounded priority inversion cannot occur, but there can be

two other problems one is called as chain blocking and the other is that deadlocks can occur, we

had looked at these two problems.

(Refer Slide Time: 01:46)

But just to refresh the chain blocking problem let us say we have several tasks which need

resources and let us say the task t2, t3, t4 up to tn-1. So, all these tasks are lower priority tasks

compared to t1 but these tasks are released earlier and they lock they execute and then lock the

required resources.

Let us say task t2 locks R2, t3 locks R3, t4 locks R4 and so on. And task n-1 locks resource n - 1.

But at that point of time the task t1 is released and task n also releases, it locks resource n. And

at that time the task t1 becomes ready. After all these tasks have acquired their resources and it

executes some time and then it tries to lock the resource R2.

But resource R2 is already locked by task t2. So, task t1 needs to wait and as it waits task t2

inherits the priority of t1 because t1 is waiting here and the t2’s priority becomes equal to t1, t2

inherits the priority of t1 and it proceeds with execution and after some time releases the

resource R2 and then t1 acquires R2 and proceeds with execution but after some time it needs

R3. But R3 is already locked by t3.

So, again it blocks and again t3 completes and so on. So, each time the task t1 the high priority

task needs a resource it undergoes blocking. So, if it needs n resources and each resource let us

say the blocking time is let us say bi so the total blocking time for the task t1 or the total priority

inversion time. For task t1 will be Σ i = 2..n.

So, this is the total blocking time or the total priority inversion time for the task t1 and for n

sources this can be substantial and the tasks can easily, the task t1 can miss its deadline. So,

there is a major problem with the simple priority inheritance scheme.

(Refer Slide Time: 05:29)

So, this is the illustration of that scheme. T1 is the highest priority task, Tn executes first the

lowest priority task locks Rn and by that time Tn-1 is a higher priority task that gets ready

preempt Tn locks Rn-1 that is preempted by Tn-2 and finally, T2 locks R2 and at that time the task

T1 becomes ready and as soon as task T1 gets ready these are the lower priority tasks they get

preempted the T2 is the lower priority task gets preempted at that point.

But T1 needs resource R2 and it blocks here. And T2 inherits the priority of T1, it after sometime

releases R2 and as it releases R2, T1 starts executing, it acquires R2 and starts executing and after

some time it needs R3 and so on. So, each time it blocks. The total block time in the worst case

can be the total resource usage time of the lower priority tasks.

(Refer Slide Time: 07:18)

So, let us look at two properties of the priority inheritance protocol. The first property gives it

in the form of a theorem because you can prove it. A task Ta can be blocked by k lower priority

tasks due to a single resource uses then the worst case duration for each Ta can suffer inversion

is max(ei), where ei is the critical section time of Ti.

So let us say T2 is a high priority task. And there are several low priority tasks T10, T5,etc. and

all of them need the resource R. Now, what is the maximum duration for which T2 can undergo

blocking because we need to design the system conservatively. We need to know what is the

worst case blocking time of T2; on account of priority inversion?

Since T2 can be blocked by any of this at different times. So, we need to consider for instance

of T2. It can be blocked by any one of the other tasks. So, that is an important observation that

T2 can be blocked an instance of T2 can be blocked by an instance of either T5, T10, etc. Those

who need the resource R, Why is that?

The reason is that by the time T2 gets ready and needs the resource R it might have been locked

by any of these lower priority tasks, and then T2 undergoes inversion. So, since it can be

blocked by any of this, so the worst case, it will be max(ei) where ei is the critical section time

of Ti. The second theorem is that if a task needs k resources, so let us say T2 needs R1, R2, R3 et

c. Now the maximum duration for which the task Ta can suffer blocking is Σ max(ej) where ej

is the longest duration of a task by resource rj.

Now, to be able to prove this, we need to consider that in priority inversion protocol, the high

priority task can undergo chain blocking. So, for R1 it can block, for R2 it can block, and R3

also it can block. Now, by the theorem 1, for each it will be the max of the low priority tasks

needing that resource max of the critical section time.

And therefore, we need to sum it. So, this becomes max ej. So, ej for R will be let us say two

tasks are there, so the maximum critical section time of T5, T10. And let us say T7 and T8 using

R2 and also T2. So, then it will be a max of critical section time of T5 and T8 and similarly for

R1. So, that is the essence of the theorem, which is proved by using theorem 1.

(Refer Slide Time: 11:22)

Now, the basic priority inheritance scheme has two major set comings one is the chain blocking

and the other is that it does not do anything to prevent deadlocks. Deadlocks can occur in that

system, it does not help in preventing the deadlocks. Now let us look at the improvement. The

basic priority in priority inheritance protocol, which is the highest locker protocol; it is an

improvement over the basic inheritance scheme.

And in this scheme, every resource is assigned a priority value during the system initialization.

So, if there are resources R1, R2, R3 etc. So, each resource ceiling priority is computed for each

of the resource during the system initialization time and these are maintained. So, what is the

rule for computing the ceiling priority value for each of the resources? The ceiling priority

value is equal to the highest priority of all tasks needing that resource.

We will just explain this how the ceiling priority is computed with the help of some examples.

Let us look at this example. Let us say T2 is the highest priority and also T5 and T10 need

resource R, in addition to T2, T5 and T10 need the resource R. So, the highest priority task

needing the resource R is T2. So the ceiling value of the resource is two.

Now, once the ceiling priority for every resource is computed, the rule is that whenever any

task acquires resource, its priority is raised to that of the ceiling priority of the resource. So, if

T5 acquires resource R its priority value becomes 2, T10 acquires resource R then its priority

value becomes 2. So, its priority becomes equal to the highest priority task needing or that can

use that resource. So, that is the protocol. And of course, as soon as it releases the resource, it

gets back it is own priority.

(Refer Slide Time: 14:23)

So, the priority of a task becomes the ceiling priority of the resource it acquires and as soon as

it completes the resource usage and releases gets back to it is original priority. There is a simple

protocol, the highest locker protocol. It will see that it addresses the problems with the basic

priority inheritance protocol. But unfortunately, it creates some new complications.

And we will subsequently just after this, we will look at the priority ceiling protocol which

overcomes most of the problems that have been introduced by highest locker protocol. So, the

priority ceiling protocol is a bit complicated protocol, but is possibly the best protocol

compared to the basic inheritance protocol and the highest locker protocol. But we will discuss

the priority ceiling protocol a little later after we discuss highest locker protocol, because it is

an extension of the highest locker protocol.

And if we understand the highest locker protocol, we can easily understand the priority ceiling

protocol. Now in the highest locker protocol that ceiling priority value is assigned to all critical

resources during system initialization. And the ceiling priority is equal to the highest priority of

all tasks that might use that resource.

(Refer Slide Time: 16:15)

Just to give an example, how the ceiling priority of a resource computed let us consider the

resource R which can be used by T1, T2, T3 at different points in time, sometime or other T1,

T2, T3 would use the resource R. And the ceiling value that will be associated with the resource

is maximum priority of T1, T2, T3.

So, if T1 happens to be the highest priority, then the resource will have the priority of T1. So,

any other task that occurs the resource at some point during execution, its priority becomes

equal to the ceiling priority of the resource. And as it completes the usage of resource and

releases the resource, it gets back to its original priority that is the highest locker protocol.

 (Refer Slide Time: 17:23)

Now here, let us say the priority of T1 is 5, priority of T2 is 2, and priority of T3 is 8. Now, let us

say 2 is the highest priority among this, then during system initialization, the ceiling value

associated with R will be equal to 2. So, that is the important step in the highest locker protocol

that the ceiling value needs to be computed for every resource. And these values are associated

with that resource and whenever any task acquires, the resource, its priority becomes equal to

the ceiling priority of the resource.

Now, what if the task acquires multiple resources? Let us say R1, R2 and R3 let us say task

acquires all the three resources, then the priority of the task will be the maximum of the ceiling

value of R1, R2, R3. Now let us say the task releases R1 and only holds R2, R3, then the

priority of tasks will become maximum of the ceiling value of R2, R3. So, that is just an

explanation of how the protocol will work.

 (Refer Slide Time: 18:50)

So, the in some systems like those which are based on the Microsoft, so their higher priority

value indicates a higher priority. For example, the priority is 10. This is higher priority than

priority is 9 which is higher than 8 and so on. So, 10 is the highest priority if there are 10

priority levels. And therefore, in Windows, we can say that the ceiling value of the resource is

the maximum of the priority values because the higher priority value indicates a higher priority.

On the other hand, in the UNIX based systems, a lower priority value indicates a higher

priority. For example, if the tasks priority is 1 indicates that it is the highest priority it is greater

than a task whose priority is 2 which is greater than a task whose priority is 3 and so on. And in

this case, the ceiling priority will be computed as the minimum of the priority of all tasks

needing to use that resource.

So, this is a difference between the Windows based system and the UNIX based system. And

therefore, we need to specify which type of system we are using, whether it is a Windows based

system or a UNIX based system. And based on that the ceiling priority is computed either as

the maximum of the priority or the minimum of the priority.

(Refer Slide Time: 20:55)

Now, this protocol, which we will discuss very simple protocol, that the task priorities raised to

the ceiling priority as soon as it acquires the resource. And as soon as it releases the resource, it

gets back its original priority. Now, we will see that it eliminates the unbounded priority

inversion problem, which is the major problem, which even the basic inheritance scheme

overcome.

But additionally, the highest locker protocol also eliminates the problem of deadlock and chain

blocking. So, these two problems which were there in the basic priority inheritance protocol,

they are overcome in the highest locker protocol, we will just argue about that that how the

unbounded priority inversions deadlock chain blocking are overcome in the highest locker

protocol. But it introduces a new problem, which is the inheritance blocking problem.

We will see what is this new problem and we will see that how it solves these three problems of

unbounded priority inversions, deadlock and chain blocking.

(Refer Slide Time: 22:23)

Now, let us first understand the working of the protocol to start with during the system

initialization for every resource which tasks need that resource is analyzed. So, this can be done

statically during compile time, and the value will be assigned to the resource, statically during

compile time or during system initialization time.

So, here by examining the code, a static analysis of the code will indicate the resource is being

used by which tasks. Now R is being used by T6, T1, T2 and T3 and their priority values are 3, 5,

2 and 8. Now, let us assume that it is a UNIX based system where a lower priority value

indicates a higher priority. So, among 3, 5, 2, 8, 2 is the highest priority and therefore, the

ceiling value associated with R will be 2.

Now let us say T1 whose priority is 5 acquired the resource R. And as soon as it acquires, the

resource R its priority will change to 2. Now, let us say T6 needs the resource T6 is waiting for

the resource whose priority value is 3 which is a higher priority task and T4 whose priority is 4

and T5 is three and so on, which will not be able to execute.

So, as soon as T1 executes with priority 2 T6, T5, T4, etc., cannot execute because high priority

task is executing. And it cannot be preempted by other tasks T6, T4, T5 etc. And therefore

unbounded priority inversion cannot occur let me just repeat that as soon as the task acquires a

resource, its priority becomes equal to the highest priority and therefore, other tasks cannot

even block for this.

So, this cannot occur here T6 will not get ready to run it cannot block for R, because, the

priority of T1 is already raised to 2 and this cannot even block for the resource forget about

unbounded priority inversion that unbounded priority inversion was occurring when this was

waiting for this and the tasks which are lower priority than this and higher priority than this,

they used to execute and preempt the task holding the resource.

So, that question does not arise here, because its priority is already set to very high value. And

therefore, even the other task cannot block for this first of all, and tasks that used to preempt

this task which is lower than the task blocking all those questions do not arise here. So,

unbounded priority inversion is not possible inversion is not possible.

Because as soon as it gets the resource its priority increases to the priority of the highest task

needing the resource the other tasks will not even become ready they cannot even preempt this

task to be executing and wanting to use the resource. So, that situation cannot arise and forget

about the other tasks preempting these tasks so, unbounded priority inversion cannot occur in

the highest locker protocol.

Similarly, we will see that the problems of chain blocking and deadlock cannot occur here. We

are at the end of this lecture and we will argue that the other two problems also cannot occur.

And we will see the new problem that occurs here is the inheritance related inversion a big

problem which is not there in the basic priority inheritance scheme, or it was minimal there.

Now, that problem is severe here in the highest locker protocol, we will examine what is that

new problem that occurs. But we are at the end of the lecture and we will discuss those issues in

the next lecture. Thank you.

