
Real Time System

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture: 27

Basic priority inheritance protocol (PIP)

Welcome to this lecture. In the last lecture, we had discussed about the problems that can occur

due to resource sharing in a real time system. There are two problems one is a simple priority

inversion and the other is unbounded priority inversion. The simple priority inversion is not a

very vexing problem, because we can overcome it through careful programming and the effect of

simple priority inversion can be minimized.

But unbounded priority inversion cannot be solved through careful programming, it can still

make the tasks to miss their deadline with the most careful programming, we need special

mechanisms to be supported by the operating systems to be able to overcome the unbounded

priority inversion problem. We had seen what exactly the unbounded priority inversion problem

is. Here a low priority task is holding the resource and therefore a high priority task needing the

resource is blocking.

But in between the intermediate priority tasks which do not need the resource this start executing

and the low priority task cannot make progress with its computation. As a result, the high priority

task undergoes blocking not only due to the low priority task which is holding the resource, but

due to the other intermediate priority tasks, which do not need the resource.

Now, let us look at the mechanisms that exist to handle the unbounded priority inversion

problem. We will understand the mechanisms and also their advantages and disadvantages and

the situations in which it is useful.

(Refer Slide Time: 2:15)

The simplest priority the simplest mechanism for unbounded priority inversion is the basic

priority inheritance protocol. Very simple mechanism proposed by Sha and Rajkumar in 1990.

The main idea behind this scheme is very simple. The idea is that a low priority task executing in

its critical section cannot be preempted from resource usage, since it cannot be preempted, it has

to use the resource.

So, the only thing that you can do is let it complete as early as possible so that the waiting time

or the priority inversion time for the high priority tasks can be at least minimized.

(Refer Slide Time: 3:18)

But how do we make the low priority tasks to complete its usage of the resource as early as

possible we raise its priority. So, that the intermediate priority tasks which are preempting the

low priority task and delaying its execution as a result unbounded priority inversions were

occurring they will not occur.

Because we rose the priority of the low priority task holding the resource to very high value

equal to the priority of the task that is waiting for it. So basically the low priority task inherits the

priority of the high priority tasks that is waiting for it. And therefore, the intermediate priority

task cannot preempt it and the low priority task completes its execution without getting

interrupted. By how much the priority of the low priority task needs to be raised.

It should not be made the maximum priority because in that case, other tasks, high priority task

may miss their deadline. It should be made as much as that of the task that is blocking. Since the

low priority task gets the priority value equal to the tasks that are waiting, we say that the low

priority task inherits the priority of the task that is waiting for the resource.

(Refer Slide Time: 5:13)

Now, it may so happen that a task a low priority task is holding a resource and a high priority

task became ready, started executing and then waited for the resource because it needed that

resource R. But, there can be another. So, in the priority inheritance protocol L TL will inherit the

priority of TH or we can say priority of TL it inherits the priority of TH.

But it may so, happen that another very high priority task let us say TH
’ whose priority is even

more than TH started executing and it also needed the same resource and it started blocking. So,

what will be the priority of TL? TL will inherit the priority of all the tasks that are waiting for the

resource. So, in this case, since priority of TH
’ is more than TH the priority of TL will be raised to

priority of TH
’.

There may be another intermediate priority task which may block for the resource, but in this

case the TL priority will be unaffected it will still be operating at the priority of TH
‘. And all

these tasks are maintained in a FIFO queue. And the priority of these FIFO queue is scanned the

priority of all the tasks and the highest among these is assigned to the TL.

The inheritance clause is applied each time after a higher priority task blocks for the resource.

So, that is the basic priority inheritance protocol of Sha and Rajkumar in 1990. We will refer it as

PIP Priority Inheritance Protocol. And the priority of the task TL is raised, but what about, does it

operate that same priority even after it releases the resource no.

As soon as it releases the resource, it gets back to its own priority. If it is holding no other

resource, if it is holding another resource R’ it may hold multiple resources. And if it is holding

another resource R’ and it released R then the priority of TL will be the maximum priority of

tasks waiting for R’.

So, that is the mechanism by which the priority of the TL is adjusted. As it, other tasks block

further resource the priority is raised. And as TL completes executing using the critical resource

and releases the resource, it gets back its own priority. The inheritance clause is applied each

time after a high priority task blocks.

(Refer Slide Time: 09:27)

The inheritance clause is that whenever a task waits, the priority of TL temporarily is assigned

the priority of TH or TM whatever. And as soon as the task releases the resource it gets back its

original priority value, if it is holding no other critical resource. But if it is, if it was holding just

one resource R, TL was holding one resource R and it release the resource it will get back its own

priority.

But it was if it is holding another resource R’, then there may be some tasks which are waiting

for R and there were some waiting for R’. And it releases the resource R. So, the priority of TL

will be maximum of the tasks waiting for R’.

(Refer Slide Time: 10:52)

Now, does priority inheritance protocol PIP? Does it prevent unbounded priority inversions?

Yes, it prevents unbounded priority inversion because the high priority task will undergo

inversion due to at most one task for a resource. Because the low priority tasks priorities rose

intermediate priorities tasks cannot preempt it.

And therefore, it undergoes inversion due to a single task that is a low priority task and it the

unbounded priority inversion problem becomes a simple priority inversion problem. And we

know that simple priority inversion problem is not that big a problem, we can overcome using

careful programming. So, the intermediate priority tasks they cannot preempt TL and therefore TL

continues to execute and complete its usage of resource R.

And then TH can acquire the resource. So, the unbounded priority problem is effectively solved

by the simple priority inheritance mechanism. And this is what we are referring when we said

that the inheritance mechanism was done on and off in the Mars Pathfinder, this is the

inheritance mechanism priority, inheritance mechanism.

The simplest solution prevents unbounded priority inversion problem, but if we analyze it

further, we will find that it has a few problems and only in extremely simple applications. We

can use the priority inheritance principle or PIP the Priority Inheritance Protocol for only very

simple embedded real time systems.

Let us understand what the problems are and what are the improvements on the priority

inheritance protocol to handle those problems which is suffered by PIP.

(Refer Slide Time: 13:25)

Before that, let us understand the working of the PIP through a simple example. Let us say in a

real time system, the tasks are scheduled using a rate monotonic scheduler and 1 is the highest

priority, 2 is the second highest priority and so on and 10 is the lowest priority at some instant of

time. A task Ti was holding a non-preemptable resource in R and the priority of Ti is 5.

Now after some time that is instant 2. A task Tj which started to execute and priority is 10. And,

so here 10 is the highest priority and 1 is the lowest priority in this system. So, Tj is a high

priority task, and it started it became ready and started executing. And it needed the critical

resource nR at instant 2.

So, it started executing, and after some time, it needed the resource nR. Now as it needed the

resource nR, it blocked for the resource. But as soon as it blocked for the resource, the priority of

Ti is has been raised to 10. It has inherited the priority of Tj and after some time, it released the

resource the nR completed execution and release the nR.

And as soon as it released nR, it got back its own priority 5 and nR is acquired by Tj, which has

the priority 10. So, this example gives the understanding that when does the priority of a low

priority task increase and the instant at which it is, it gets back its original priority value.

(Refer Slide Time: 16:22)

Now let us understand what the problems with this basic priority inheritance scheme are. There

are two major problems one goes by the name chain blocking. Chain blocking can occur in the

priority inheritance scheme, the simple PIP chain blocking can occur and chain blocking can also

cause a high priority task to miss its deadline.

The second problem is that deadlocks can occur here. This mechanism of priority inheritance

does not do anything to prevent the deadlock so deadlocks can occur in a priority simple priority

inheritance protocol system. Let us understand these two how they develop in a real time system.

(Refer Slide Time: 17:27)

First, let us look at deadlock. Let us assume that T1 and T2 are two tasks, which need the

resources CR1 and CR2, both need T1 needs CR1 and CR2 and T2 also needs the resources CR1

and CR2. And T1 has higher priority than T2. But then T2 starts running first and executed lock

R2 and after some time T1 started running and therefore T2 was preempted.

So, is T1 started running it executed lock R1. So, it acquired R1 and after some time it wanted to

lock R2. But R2 is already held by T2 and in this priority inheritance protocol. T2’s priority will

be raised to T1 here at this instant when it tried to lock R2 and it blocked for R2 because R2 is

being held by T2. So, T2’s priority is increased and it starts executing, but after some time it

wants to use R1.

But R1 is already being held here by T1 and T2 waits for T1 to release R1 and T1 waits for T2 to

release R2 and therefore there is a deadlock situation and the two tasks can easily miss their

deadline. So, through this example we can see that there are many ways in which deadlock can

occur in a simple priority inheritance protocol system.

Even though there is a priority inheritance mechanism supported by the system, still deadlocks

can occur and tasks can miss their deadline, if we can somehow develop a resource sharing

protocol, which also makes it impossible for deadlock to occur, then that will be really nice.

Because we are sure that we are using the protocol which is safe from deadlocks, you do not

have to worry because if deadlocks occur, tasks are going to miss their deadlines.

(Refer Slide Time: 20:42)

Now, let us understand the chain blocking problem. A high priority task which needs to use a set

of resources can undergo chain blocking, let us say a task T1 needs a set of resources R1, R2, R3,

Rn it needs some 4, 5 resources. Now it can undergo chain blocking, we say that it undergoes

chain blocking, if each time it needs to access a resource, it undergoes priority inversion. A

simple priority inversion and we know that the maximum time for which it can undergo a simple

priority inversion is er.

er is the time of usage of the resource are let us say for R1 it will be er1. So, the low priority task,

the maximum time it usage the resource R1. And similarly, when it needs R2, again it will

undergo blocking for er2 and so on. So, if it needs five resources, it will be five additions here,

which can become a large number, large enough duration for T1 to miss its deadline.

(Refer Slide Time: 22:38)

Now, let us try to understand with one example. So, here T1 is a higher priority task and T2 is

holding two resources CR1 and CR2 and T1 is initially waiting for CR1. Now, after some time T2

started executing and then T1 was waiting and T2 executed for er1, er1 time for each it needed CR1

it executed for er1 time and then released CR1.

Now CR1 is acquired by T1 and T1 started executing. But after some time T1 needed CR2, started

blocking for CR2 at that time T2 will again start executing and it will execute for er2. So, for the

two resources the task T1 occurs blocking times er1 and er2 and if it needs n resources, then we

can easily visualize and it may not be held by one task actually.

Here in this example, we have shown that the resource is being held by T2 all the resources that

T1 requires. It may not be the case it may be that the resource is held by different tasks T2, T3, T4,

Tn, etc. And each time T1 will block and the total blocking time or the total priority inversion

time for T1 due to chain blocking will become er1 + er2 + …+ ern which can be a large number for

T1 to miss it deadline.

(Refer Slide Time: 25:01)

Now, let us understand the chain blocking example with this, the chain blocking with this

example. We have a high priority task t1 and there are low priority tasks t2, t3, tn, etc. Now, t2

initially locked R2 and t3 started executing locked R3, t4 locked R4 and so on and tn-1 locked

resource n-1 and tn locked resource Rn.

But then the high priority task t1 it got ready after all the resources have been locked. Now, the

task t1 needed R2 after executing some time needed R2. But R2 is already being held by a task t2.

So, t1 will block. t2 will inherit the priority of t1 and it will start executing until after some time it

unlocks R2 and then the time for which it executes the task t2 is er2 and then task t1 starts

executing and after some time needs R3, lock R3.

But R3 has been already locked by task 3. So, this starts executing, inherits the priority of t1 starts

executing until it does unlock R3. So, it executes for let us say er3 and so on ern. So, the tasks t1;

the total priority inversion period or the blocking period is er2 + er3 + …+ ern. If there is a simple

priority inversion like er1 or something that can be minimized through careful programming, but

if it is n times that a task can miss its deadline.

So, the chain blocking problem where a high priority task each time it needs a resource, needs to

wait for a task to release the resource is a very big problem here in the priority inheritance

protocol. We will discuss some refined protocols namely the highest locker protocol and the

priority ceiling protocol which overcome chain blocking and deadlock in this both these

protocols deadlock is not possible and chain blocking is not possible unbounded priority

inversion is not possible.

So, but these protocols HLP and priority ceiling protocol are slightly more complicated than the

basic priority inheritance protocol. So, unless our system is very primitive, very simple system

will go for HLP or PCL. But if our system is very simple, we do not want any complicated

mechanisms. We would use the basic priority inheritance protocol for supporting resource

sharing among real time tasks. We are at the end of this lecture.

We will stop here and continue from this point discussing about improvements of the priority

inheritance protocol in the next lecture. Thank you

