
Real Time Systems

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 23

Handling Aperiodic and Sporadic Tasks in Rate Monotonic Scheduling (Contd.)

Welcome to this lecture, over the last few lectures, we have been trying to focus on the real

time scheduling using rate monotonic scheduler. The rate monotonic scheduler is important

scheduler, in real time systems used in an overwhelming number of applications and there are

many issues associated with it, which we have been trying to investigate the different

variations of the algorithm and then the different issues that can crop up.

At the end of the last lecture, we are trying to discuss how aperiodic and sporadic tasks can

be handled in a rate monotonic scheduler. In the clock driven schedulers, it was very difficult

to handle these tasks that are aperiodic tasks and sporadic tasks. But in the rate monotonic

scheduler, we can handle such tasks and the simplest way to handle a sporadic task those

which have stringent deadlines and critical tasks.

So, for that, in the last lecture, we said that we can convert a sporadic tasks into a periodic

tasks and we fix a minimum separation between two sporadic tasks and that we call as the

period of the tasks and we have admission control mechanism where if multiple such

sporadic tasks arrive it spaces them out releases one task and queues the other one and

releases other after that period of time which are fixed and for handling aperiodic tasks and

other sporadic tasks.

The periodic server technique, the polling servers are very important technique we are

discussing about it in the last lecture, let us continue from that point.

(Refer Slide Time: 2:31)

The periodic servers are a mechanism by which you can handle aperiodic tasks and some

sporadic tasks. Periodic server as the name implies, it is a high priority high priority periodic

task and it is a server in the sense that this task serves many aperiodic tasks and without

periodic server, the aperiodic task response time is very poor. But by using a periodic server

technique, we can give reasonable or the required response times to aperiodic tasks and

sporadic tasks.

And just to clarify, it is possible to have multiple periodic servers in a system. The rate of

arrival of the periodic tasks that is the period of these periodic servers is determined by the

priority of the aperiodic tasks. There are some aperiodic tasks which are very high priority.

For example, an operator wants to check the configuration parameter and set the

configuration parameter of a chemical plant.

So, that is a much more high priority task then let us says a task just logs the event or reports

the routine statistics of the plant. So, to handle these different categories of aperiodic tasks,

we can create multiple periodic servers some with very short period high priority tasks which

cater to high priority aperiodic tasks and then we have lower priority cater to lower priority

tasks.

(Refer Slide Time: 5:13)

There are various types of periodic servers which have been proposed. Some are static

servers, like the polling server, deferable server priority exchange and the sporadic server.

We will look at this briefly and see the different situations in which this can be used. And

there are also dynamic servers like total bandwidth server and constant bandwidth server etc.

 (Refer Slide Time: 5:43)

Now, let us look at the one of the very basic periodic server called as the polling server. The

polling server is a high priority task which is created to handle the aperiodic task it is a type

of periodic server. And now, there are some aperiodic tasks which are assigned to this

periodic server and there are periodic servers, sorry if there are such aperiodic tasks during a

specific instance of the polling server job, which has been scheduled, if there are aperiodic

tasks which are waiting, then the polling server will serve them as per its execution time

period.

So, the polling server will have not only a period but the assigned execution time. Now, let us

say in one instantiation in one instance of the polling server job, there are no aperiodic tasks,

because aperiodic tasks have random arrival time. And it may so happen that in one

invocation of the periodic server, there are no aperiodic tasks.

So in that case, the polling server will suspend itself. We know how a task can suspend itself

can just wait for an event or something. And then, there is a context switch. Now next tasks

execute, basically the polling server forgoes its allotted slot. And of course, the lower priority

polling servers and other low priority tasks they can start executing. And the polling server

that suspended itself in the next invocation after its period.

The next invocation again it takes it their aperiodic task to solve and therefore search them.

But the question here is that what is the maximum response time or the worst case response

time of an aperiodic task in a polling server. So, the polling server serves up es time. If there

are a lot of aperiodic tasks which have come up, it cannot basically complete all of them. And

if the polling server let us denote the polling server as Ts.

This is the polling server and it has an execution time of es and a period of Ps. Now the Ps will

be our high priority for high priority polling servers that are the high priority aperiodic tasks.

Now, let us assume, so we are trying to answer this question that what is the worst case

response time of aperiodic task? Now let us see the timeline of invocation.

The period of the sporadic server is Ps. And during this instance, during this interval, one

instance of the periodic server, that is Ts will be scheduled by the rate monotonic schedulers,

it can get scheduled at the beginning of the interval, or towards the end of the interval and so

on. Now, let us say the polling server is getting scheduled at the beginning of the interval.

Now, the aperiodic tasks arrived just after the polling server has been scheduled.

So, the polling server can, at best handle this aperiodic task in the next invocation, because

here it has already started to execute it cannot handle and the next invocation of the periodic

server, maybe towards the beginning of the interval, Ps or maybe towards the end of the

interval, in the worst case, it can be towards the end of the interval.

And the task, the aperiodic task may get scheduled somewhere here. So, it just missed here

just arrived just after it had started. And it got sort towards the end of the interval. So, 2 Ps is

the worst case response time, of an aperiodic task using a polling server. And if we have

aperiodic tasks, which have, let us say, we need to determine that the response time of this is

let us say 10 seconds, then the period of the polling server need to be 5 seconds. To be able to

give a worst case response of 10 second.

The polling server period needs to be 5 seconds. And this is one of the simplest periodic

server. The implementation is rather straightforward. Here we need a queue where the

periodic, aperiodic tasks are queued up. And the polling server will select from this queue.

Depending on some criteria may be the priority of the periodic task. Or maybe just FIFO the

first in first out.

And another thing that we need not only the queue, but there is a controller the capacity used,

because these tasks have random arrival, it may so happen, that some invocation there are

many aperiodic tasks which are queued up. And then, the polling server needs to stop after it

has completed its quota of es time. And we need one mechanism for that. So that is it, the

polling server is rather straightforward, just a queue and control mechanism for the capacity

used.

(Refer Slide Time: 13:30)

Now let us look at the schedulability analysis. If we handle aperiodic tasks using a polling

server, will the periodic tasks get affected? Will their response times decrease? Or is it that

the polling server does not affect the response times of the periodic tasks and none of the

periodic tasks are going to miss their deadline if we introduce a polling server. Let us just

investigate that. If we have a polling server, we have a periodic task corresponding to the

server which is Ts, and Ts = es , Ps.

So, if we had n tasks earlier n periodic tasks with the polling server, we will have if we have

one polling server, we will have n plus 1 tasks. And as I said, that we can have multiple

polling servers then we might have n plus 2 or n plus 3 periodic tasks. So, the number of

periodic tasks increases. That is the first thing with a polling server. And if we have a short

enough period for assigned to the polling server, then the scalability of the periodic tasks

decreases.

And if we use the Liu Leyland result the utilization due to all tasks if it is Σ i = 1 to n there are n

tasks ei / Pi summation 1 to n, this is the utilization due to the existing periodic tasks and

now, we have created one more periodic task which is the polling server. And now, the bound

under Liu Leyland becomes (n + 1) [21/n+1 -1]. So, on one hand the utilization increases due to

the polling service and on the other hand the bound decreases because we have 21/n+1 and

therefore, the bound overall bound here decreases and here the utilization increases.

So, if a periodic task set was just schedulable, it may so happen that we cannot really

introduce a polling server, because as long as we introduce a polling server, the bound will be

violated and the tasks will no more be schedulable. It is possible, but if the utilization was

low enough, we can introduce a polling server without really violating or exceeding the

bound.

(Refer Slide Time: 16:55)

The polling server, we had seen that the response time for aperiodic tasks is a problem. In the

worst case, the response time can be 2 Ps if Ps is the period of the polling server, but can this

be improved. So, that is the idea behind a deferable server. It is similar to a polling server.

Here again, there is a queue and control mechanism for the execution time. So, the aperiodic

tasks, but here the way it works is that if there is an invocation of the deferable server, let us

say that deferable server gets invocated at Ps interval somewhere between these intervals it

will be scheduled by the rate monotonic scheduler.

Now, let us say that it got scheduled at the start of the interval. Because there are no other

higher priority tasks, the rate monotonic scheduler, scheduled it at the start of the interval.

Now, let us say the aperiodic tasks were not there. And they arrived a little later. This is the

place where aperiodic tasks arrived. And the deferable server was scheduled here, but there

are no tasks. And as a result, it would suspend itself.

But in a polling server, the polling server suspends itself. And it is again invoked in the next

interval. But here, it does suspend itself waiting for the aperiodic tasks to arrive. So,

whenever aperiodic tasks arrive, the polling server becomes active. If there are no higher

priority tasks, then it starts executing, of course, the lower priority tasks would have to wait.

So, maybe somewhere here, the deferable server would start to execute.

So, this is the difference between a polling server and a deferable server is that the deferable

server suspends itself waiting for aperiodic tasks, whereas in a polling server, the polling

server suspends itself only to be scheduled in the next interval. Now let us see the impact of

the deferable server on the response time of the aperiodic tasks and also the impact of the

deferable server on other periodic tasks.

So, definitely, it will provide a much better response time for aperiodic tasks. In the worst

case, the response time of a, of an aperiodic tasks becomes Ps. Because even if they have not

arrived, because these are of random arrival the aperiodic tasks. So, somewhere they arrive

and they would be served before the line separates period Ps. So, and therefore, the worst case

Ps is the time interval for which the aperiodic task would have to wait.

So, compared to a polling server, the response time there is a substantial improvement from 2

Ps we have response time Ps, but what about the disadvantage? The disadvantage is that it

becomes much more complex and violates the rate monotonic principle. Because here the

task needs to suspend itself waiting for an aperiodic task whenever there is an aperiodic task

arrive, then the polling server sorry that deferable server needs to be enabled. And also, it

violates the rate monotonic principle because it suspends itself when it was scheduled and

later it reclaims its execution time, which is not in agreement to the rate monotonic principle.

And therefore, the schedulability of tasks which are of lower priority than the deferrable

server can get affected they can, their response time may become large enough for them to

miss their deadlines. So, this is a problem here. If the utilization due to the task set is low, we

can use a deferable server. But again, the response times of the lower priority tasks can get

increased by es. And that is a problem here.

(Refer Slide Time: 22:17)

Let us look at an improvement of the deferable server. Because the deferable server even

though it had substantial advantages for aperiodic tasks, but for the periodic tasks, which are

normally of higher priority, it is a problem. The deferable server can make them

unschedulable or they may miss their deadlines. Now, let us look at an improvement of the

deferable server called as a priority exchange server.

The priority exchange Server is similar to a deferable server. Again, when there are no

aperiodic tasks ready during invocation of the priority Exchange server or the PE server it

suspends itself. So, let me just explain with this diagram that if this is the priority exchange

the period of the priority exchange.

So, during each of this period, it will get invoked once by the rate monotonic scheduler. Now,

let us say it got scheduled at the beginning here and there are no aperiodic tasks here. So, the

period the priority exchange server would suspend itself. And if later on some aperiodic task

arise then the periodic the priority exchange server will be activated. But then it is priority.

Ok let me just refine what I said that when it suspends itself, it gives its priority to one of the

tasks which have been waiting.

So, the priority exchange found that there are no aperiodic tasks and then it suspends itself.

But while suspending the priority of the priority exchange server, let us say the priority is

Pri(TPE). So, this will be assigned to a lower priority task which was waiting so that it

exchanges a priority.

The priority of the priority exchange server will be assigned to a low priority task the priority

of a low priority task will be increased and the priority of the priority exchange server will

decrease to the low priority. Now, later on when there is aperiodic task which arrives the

priority exchange server will become active, but then it will not execute at its own priority it

will execute the priority which it had exchanged with a low priority task.

And therefore, the rate monotonic principle is not violated very blatantly that it just

suspended itself and start executing at again its own priority, it led to a lower priority task

because it could not execute it assigned its priority to a lower priority task which started to

execute at the priority of the priority exchange server.

And then later when aperiodic tasks arrived, the priority exchange starts to execute the

priority of the low priority task and therefore, it may get scheduled a little later. So, the

response times for the aperiodic tasks will be little worse compared to a deferable server. But

then, it does not violate the rate monotonic principle as badly as the deferable server used to

when aperiodic task becomes ready. The priority exchange server starts to execute at a

priority of the lower priority task with which it had exchanged its priority.

 (Refer Slide Time: 27:01)

The advantages of the priority exchange server is that it provides better bounds for the

periodic tasks because it starts executing at a lower priority, it does not violate the rate

monotonic principle and the periodic tasks will find that their response times is not much

affected. But the disadvantages of course, worse response time for aperiodic task as

compared to the deferable server. We are at the end of this lecture. We will stop here and

continue in the next lecture. Thank you.

