
Real Time Systems

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 21

RMS Generalizations

Welcome to this lecture. In the last few lectures, we have been discussing about the rate

monotonic scheduler. As we have been saying that rate monotonic scheduling is very popular

in real time systems. If you are programming a real time system it is very likely that he will

use a rate monotonic scheduler unless you are developing a very simple embedded

application which does not even have scope for large number of tasks and so on then you are

going to use the cyclic scheduler.

Otherwise, it is very likely that you will use the rate monotonic scheduler or a variant of that.

We have been discussing some issues with rate monotonic scheduling. For example, we

discussed about the deadline monotonic scheduling, the deadline monotonic analysis and the

deadline monotonic scheduler is appropriate when the task deadline and period are different.

It is the optimal scheduler in that situation. And we have been discussing few other issues

like self-suspension and context. Now, let us proceed from that point.

(Refer Slide Time: 1:48)

In the last lecture towards the end were discussing about self-suspension of tasks. Tasks do

self-suspend, because of a variety of reasons, maybe they are waiting for an event. Maybe the

resources are not available. Maybe they are doing a input or output and then they self-

suspend and then other tasks, lower priority tasks feature waiting to execute, they start

executing and the tasks self suspends.

So, the scheduling points, those are the points where the scheduler becomes active, starts

running to select the next task in the pure rate monotonic scheduling, it is the task arrival and

the task completion events. But with self-suspension, we have additional scheduling points.

So, not only task completion, task arrival, but also the self-suspension events. When a task

self-suspends, the scheduler needs to become active start running and look for which task to

run at that point.

And for simplicity, let us assume that job that is a task instance undergoes at most a single

self-suspension. You might say that this is too restrictive, because job may undergo multiple

self-suspensions, once maybe to wait for event another time to read input and so on. Yes,

those cases can be considered. If we understand a single self-suspension case, we can easily

generalize our result to multiple self-suspensions.

(Refer Slide time: 4:16)

Now, to analyze the impact of self-suspension and schedulability, let us introduce these

notations bti is the delay a task incurs due to own self suspension and the self-suspension of

the higher priority tasks. This is in addition to the other delay that the task undergoes this

delay bti is when we relax that there are no self-suspension and to allow our task to self-

suspend. And bi is the worst case self-suspension time of Ti.

Now, we can give bi, bti that is the total delay on account of self-suspension by task Ti is the

submission of the self-suspension time of not only this task, but also all higher priority tasks.

So, assuming that T1 is the highest priority T2, the tasks are arranged in order of their priority

and Ti, Ti+1 is a lower priority task.

So, the task Ti the delay incurred is not only due to its own self suspension, but also the self-

suspensions of all other tasks. And that is what we are expressing here. bti is the submission

of self-suspension of not only the present task, but also all its higher priority tasks.

(Refer Slide Time: 6:17)

And having defined that term, let us define the Liu Lehoczky’s criterion that is the

completion time theorem in presence of self-suspension, the execution time of the current

task becomes ei + bti due to self-suspension and also the task undergoes delay, according to

the completion time theorem is ⌈ pi / pk ⌉ * execution time of task tk, but we will use e’k where

e’k = ek + btk.

(Refer Slide Time: 7:15)

Now, let us do a exercise let us say we have 3 tasks T1, T2, T3 and execution time are 10, 25

and 50 and their periods is 50, 150 and 200. Now, we know the worst case self-suspension

sometimes of T1 is 3 millisecond T2 is also 3 millisecond and for T3 it is 5 milliseconds and

we want to find out the schedulability result and the worst case response time for the tasks T1

T2 T3.

So, we would like to use the completion time theorem to find out whether the task set T1, T2,

and T3 is schedulable in a rate monotonic scheduler, when we consider the self-suspension

times of the 3 tasks and also we want to find the worst case response times.

(Refer Slide time: 8:35)

Now, for T1, 10 is the execution time 3 is the self-suspension time and T1 is the highest

priority task. So, it does not incur any delay account on account of its own higher priority

task because it itself is the highest priority task and 10 + 3 < 50, the worst case response time

per T1 is 13.

So whenever there is a T1 task instance it will complete by 13 milliseconds and the deadline

is 50 milliseconds it will complete well before its deadline. Now let us consider T2; for T2,

25 is the execution time its own self suspension time is 3 and its higher priority task is 3. So

the education time for T2 considering self-suspension is 31. And now it is higher priority task

considering the self-suspension time it is 13 so (13 X 150) / 50 < 150. So, T2 is schedulable.

(Refer Slide Time: 10:22)

Now, what about T3? For T3, the highest priority task has 3 and the second highest is 3 and

the third task T3 has 6 as the self-suspension. So, its execution time becomes 62 and for the

highest priority task, the delay at most will be (13 X 200) / 50. And for the second highest

priority task it will be 31 X ⌈ 200 / 150 ⌉ and it happens to be 176. So, the tasks are

scheduled.

(Refer Slide Time: 11:16)

So, with self-suspension, the task set was schedulable. Now, let us consider the context

switch times. Because if the task execution time is comparable to the context switch times.

We need to consider the context switch time we had seen that without self-suspension in a

fixed priority preemptable system; each task suffers at most 2 context switches.

Now, self-suspension introduces at most 2 other context switches because the task self

suspends and then it resumes. So, there are 2 other selves context switches, the task self

suspends once. Now, the total number of context switches for a task will be 4*c. So, we can

consider the effect of context switch by adding 4c to ei.

So, every tasks execution time as if it is increased by 4*c. So, that is how we can take the

context switch times with the self-suspension, the impact of context switch time with self-

suspension on the schedulability of a task set.

(Refer Slide Time: 13:02)

Now, let us consider the same task set which was schedulable under self-suspension. Now, let

us consider the same self-suspension times but also consider context switch time of 2

milliseconds. Now, we want to check whether the task set is schedulable? For the sorry, this

is 1 millisecond. So, the problem this is 1 millisecond.

(Refer Slide Time 13:50)

So for T1 the self-suspension time is 3 and we need to consider 4 context switch times which

is 4*1 and therefore it is 13 + 4 =17. Now for the T2, the self-suspension times of its own and

higher priority is 6 and context switch time is 4. So the effective execution time of T2 is 25

+6 + 4 =35, but it also incurs delay due to its higher priority task whose execution time is 10

and 3 is its own self suspension time and 4 is the context switch time.

So, we have 17 here as its new execution time in 250 / 50 and still, if you compute it becomes

51 + 35 = 86. So, still it is less than 150 milliseconds it is schedulable. T1 is schedulable T2

is schedulable.

(Refer Slide time: 15:22)

Now, let us try to look at T3, For T3, the self-suspension time is 3 + 3 + 6, 6 is its own self -

suspension time and higher priorities are 3 + 3 and context switch time is 4. So, the execution

time, the effective execution time of T3 is 50 + 16 = 66. Now, the delay due to the highest

priority task, is 17 is its effective execution time in the 200 / 50 = 68.

And for the second priority task, the effective execution time is 35. And ⌈ 200 / 150 ⌉ = 2 so

2*35 = 70. So, 70 + 66 + 68 = 204 > 200 milliseconds. So, the condition does not satisfy the

worst case execution time is greater than deadline. So, it might miss deadline, sometimes it is

just exceeding 200 millisecond.

So, T3 will not meet all its deadlines, when we consider self-suspension and context switch

even though if we ignore these 2 the task set is schedulable but when we consider self-

suspension alone, it is schedulable. But when we consider context switches, the task set

becomes unscheduled level T3 will keep on missing its deadline.

(Refer Slide Time: 17:21)

Now, we have one more issue to consider, how we handle critical tasks with long periods

because the rate monotonic scheduler, for this we need to assign priorities of tasks based on

their periods. So, it may so happen that a low priority task has a very small period and that

gets a higher priority than a critical task.

It can so happen that the critical task is the lowest priority and the non-critical tasks have got

all higher high priority values. And in that case, we know there is a danger that even if the

task set as it is, is schedulable. But if one of the low priority tasks here that is non-critical task

gets delayed some reason, then the critical task may miss its deadline. So, how do we handle

this situation?

The order in which task priorities have been assigned, is different from the criticalities of the

task, the most critical task has got a very low priority just because it had a long period. And

we cannot just simply assign a high priority to this. That will violate the basic assumption of

the rate monotonic scheduler that the priorities have been assigned according to the task

periods.

And many of our analysis results might fail that some task which is schedulable with a

readjusted priority, we just artificially inflated the priority of the critical task and then the task

set may start missing its deadline. How do you handle this situation? The solution was given

by Shah and Raj Kumar, in their period transformation technique in their paper in 1989. Now

let us see what is this period transformation technique?

(Refer Slide Time: 19:50)

So here if we know that there is a critical task Ti whose period pi is long, then we split the

task into k equal parts with the execution time of ei / k and deadline of di / k and period of pi

/ k. We do not really split; we do not change the program. This is only for our analysis, that

we change the critical task to consist of k sub tasks.

This is to check whether the task set is schedulable, and so on and if we decrease its period by

pi / k. So, if k is 4, we reduce the period by 4 times and now the task will get high priority.

And if we are not happy with the high priority pi / 4, we might make it pi / 8, let us say pi /

10.

And then we see that whether it is got sufficiently high priority. Now let us see what is the

impact of the schedulability, when we do this kind of adjustment is a virtual adjustment. Just

to handle critical tasks, no change to the program occurs is a virtual concept just to help with

our analysis.

(Refer Slide Time: 21:47)

We will just consider a very simple situation, we have only 2 tasks, T1 is execution time is 5,

and its period and deadline are 20. And have a task T2 whose execution time is 8, but the

period and deadline are 30. But it turns out that T2 is more critical than T1. This is not a good

situation, because T2 has a lower priority than T1. And if T1 gets delayed due to some

reason, then T2 will miss its deadline.

And non-critical tasks getting delayed will make a critical task miss its deadline. And we do

not want this situation to happen. So, we will have to raise the priority of T2. And we will use

the Shah and Raj Kumar period transformation result. So first, let us consider the utilization.

The utilization due to the 2 tasks is 5 / 20 + 8 / 30 = 0.52. And the Liu Leyland bound is 0.82.

So, 0.52 < 0.82, and therefore the task set is schedulable. And now let us apply the period

transformation technique.

(Refer Slide time: 23:28)

We will split the task T2 into execution time of 4 and period of 15. So, there is we just

reduced its period and in each period it does less computation. Now, T2 becomes the highest

priority task. So, the utilization remains the same. and it is schedulable there appears to be no

change on the schedulability but remember that as far as the Liu Leyland criterion is

concerned there is no impact of changing the priority splitting the task T2, but if we use the

Liu Lehoczky’s criterion, the completion time criterion.

Now T2 will cause delay to T1. Earlier T1 was the highest priority it was not getting delayed

on account of T2. Now T2 can cause delay to 1 and that may make T1 miss its deadline and

also the impact of self-suspension and the impact of context switches. So, there we can find a

difference when you use the video transformation technique to raise the priority of the critical

task, and the important thing to notice here is that we do not violate the rate monotonic

scheduling principles.

The basic assumption that the task priority is proportional to its period is not violated. And all

our analysis we can do based on that and our results will hold. But, unless we do that, we just

arbitrarily raise the priority of a task without changing anything else, and then our analysis

results will be void. And even if we say that the task set is schedulable, it may not be.

We are at the end of this lecture. There are few other issues with the rate monotonic scheduler

other than what we have seen so far. So, we will discuss those in the next lecture. We will

stop here. Thank you.

