
Real Time Systems

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 20

RMS Generalizations

Welcome to this lecture. In the last lecture, we had looked at the completion time criterion,

important design criterion for real time systems using the rate monotonic scheduler, whether a

given task set is schedulable if it fails the Liu Layland criterion, we had discussed about the Liu

Lehoczky’s completion time criterion and then we had compared EDF and rate monotonic

scheduler and so on. Now, let us continue from that point onwards.

(Refer Slide Time: 0:54)

Let us look at some of the popular applications of the rate monotonic scheduler. The rate

monotonic scheduler was chosen by many space application projects. And the reason is that it is

efficient, sturdy, runs in very small systems, the scheduler is simple, efficient. It was also chosen

by the Federal Aviation Agency advanced automation systems, used in a vast number of

embedded applications.

And it also designed, it also influenced the design of the real time communication protocol, the

future bus protocol and is widely used for offline analysis of time critical systems. So, no doubt

it is a very important scheduler, the rate monotonic scheduler.

(Refer Slide Time: 2:05)

Now, let us look at some generalizations in the rate monotonic scheduler, some issues that we

did not consider, we will consider those issues. The first issue that we discuss is the variation of

the rate monotonic scheduler called as the deadline monotonic scheduler or the deadline

monotonic algorithm DMA. So far, we have assumed that the period and the deadline for the

tasks are same, the period is the same as the deadline and that is true for a vast majority of tasks

in many applications.

But then, there may be few tasks that we occasionally come across for which the period and

deadline are different, the deadline may be less than the period or the deadline may be slightly

more than the period. And for those cases, the rate monotonic scheduler is not the optimal

scheduling algorithm. The deadline monotonic scheduler is optimal. In the deadline monotonic

scheduler, we do not assign priorities based on the task periods.

Remember that in the rate monotonic scheduler, we had said that the rate of arrival, the higher is

the rate of arrival, or the lower is the task period, the higher is the priority assigned to it, the task

with the lowest period is assigned the highest priority. But in the DMA, we do not consider the

period we look at the deadlines of the tasks. And we assign priorities based on the task deadlines.

The task having the subtest relative deadline is assigned the highest priority. So that is the

variation here.

(Refer Slide Time: 4:25)

Now let us check the schedulability of the task set using a deadline monotonic scheduler and the

rate monotonic scheduler. And in this task, the period of the task is 50. But the deadline is much

before that the relative deadline is 35. And the execution time is 10. And there is another task

whose period is 100 but the deadline is 20 and the third task, deadline and period are the same

200. Now is this task set schedulable under the rate monotonic scheduler.

In the rate monotonic scheduler, let us check the Liu Layland criterion. First let us consider the

sum of utilization, the sum of utilization if you check here because it needs to complete by 35 so

written 10 / 35 and a straight application of the Liu Layland criterion, 20 is the deadline we have

written here deadline because it needs to complete by that time and we see that it is greater than

1. So, we say that under the rate monotonic scheduling, the tasks set will miss its deadline.

But what about the deadline monotonic scheduler, in the rate monotonic scheduler we will assign

based on okay, so, this is the schedulability for the utilization due to the different tasks. Now, let

us we infer that the task set is unschedulable. But now, let us consider the deadline monotonic

scheduler, here T2 is the highest priority task and by using the completion time theorem, it will

meet its deadline because 15 < 20, 15 is its execution time and there are no other high priority

tasks.

So 15 < 20 and T1 is the second highest priority task and T2, which is the highest priority task

will arise only once during the execution of p1 sorry T1 and therefore, it is 15 + 20 = 35 ≤ 35.

So, you might ask that why does it occur only once because the period of this is 100 and the

period of T 2 is 100 and the period of T 1 is 50. So, we p 2 can occur at most once in T 1.

So that is the reason that the T 1 will also meet its deadline. So, T 2 is the highest priority task T

1 is the second higher priority task and T 3 is the lowest priority or the third priority task and that

also meets its deadline because at most two times the highest priority tasks can occur 15 * 2 and

10 * 4 the second, the highest priority tasks can occur 4 times, second highest priority tasks can

occur 4 times and then itself consumes 20 times, 30+40+20 < 200. So all the 3 meet their

deadline under the deadline monotonic scheduling.

(Refer Slide Time: 9:11)

Now let us consider context switching because the task execution times are very small typically

few milliseconds only 10 milliseconds and so on. And the context switching overhead can be

significant. For example, it may be like 1 second. So in 10 millisecond if we always ignore 1

millisecond, we might be doing a mistake. We might find that theoretically, the task set is

schedulable.

But then when you actually run it may not be schedulable, it misses its deadlines. And the reason

may be that we did not consider the context switching overhead. So, in the schedulability

analysis, when the execution time of the tasks is comparable to the context switching time, we

need to consider context switching time, which we had so far ignored. Now let us see how do we

consider the context switching time in the schedulability analysis.

When a task is preempted a higher priority task, there is a context switching time, because the

context of the task which is already running needs to be saved. And the context for the higher

priority task needs to be loaded. And that is significant. Considering that the tasks that are

executed are very small. For example, just read a sensor and just process it, maybe 5 millisecond

for that, but then the context switch may take 1 millisecond.

So we cannot really ignore 1 millisecond compared to 5 milliseconds. And the context switching

occurs when a task arrives; it preempts the currently running lower priority task if there is a

lower priority task running. But the thing is that if there is no preemption or if there is a higher

priority task running already, then the task on arrival does not cause preemption. So you need to

consider that. But just remember that all the analysis that we are doing.

The schedulability analysis is based on the worst case scenario. For the task set to compute the

execution time, we will compute the worst case execution time, or the WCET, the worst case

execution time. And I was saying the other day, that to compute the worst case execution time,

we run the task on the same processor, under various situations with different events and

different workloads and so on, and find the worst case performance.

And also, while considering the context switch, maybe sometimes two context switch may not

happen, maybe just one took place. But since sometimes two can take place, we need to consider

two, because that is the worst case. So the overhead due to context switching, we need to

consider the worst case context switching that will assume that it always preempt the currently

running lower priority task.

(Refer Slide Time: 13:11)

Now, the important statement here we are making is that in the worst case, each task incurs at

most two context switches. So that is the worst case. But we will consider the worst case we will

design our system for the worst case, so that even when the worst case occurs, our system will

still continue to function. So the very important statement here is that in the worst case, each task

incurs at most two context switches. Now why is that? Let us just reason that out. Now, let us

consider any task here.

Let us consider T4 now, let us consider that T1 was running which is a lower priority task and let

us say T4 is a higher priority task. Now it preempted T1 at this point as T4 became ready it

preempted T1. So, there is a context switch here. And as soon as T4 completed, again T1 will

start running and therefore there is another context switch. So, this is one example that there is

two context switches, and you can consider various examples. And you will see that at most

there are two context switches.

You may have considered that T4 is again preempted by another task and so on. But finally, you

will see that every task introduces two context switches. The two context switches are when it

preempts a lower priority task, when it becomes ready, it preempts a lower priority task and

when it completes, there is a context switch. And if you want to check out whether there is still a

higher priority task T5, which preempted T4 and then T5 on completion there is a context switch,

but those 2 context switches are due to T5.

So for T4 we will incur only two context switches. So, for every task we need to consider two

context switches it is as if the execution time of every task increases by 2c, if c is the context

switch time, even the higher priority tasks their execution time increases by 2c and the current

task its execution time increases by 2c if we do that we would have taken care of the worst case

context switch overhead.

(Refer Slide Time: 16:27)

Now, let us use this idea in the example, let us say there are 3 periodic tasks T1 execution time is

10 millisecond and the deadline and period are 50 milliseconds, T2 execution time is 25

milliseconds and the deadline and period are 150 milliseconds and T3 execution time is 50 and

period and deadline are 200 milliseconds and it is given that context switch time is 1 millisecond

and 1 millisecond is not insignificant compared to 10 25 etc.

So, we need to consider that in our schedulability analysis. And it becomes really simple if we

want to consider the context switch overhead, because we need to just increase the execution

time of all the tasks by 2 into the context switch time. So, this is the task set that is given 10

millisecond and 50 25 and 150, 50 and 200.

Now, the effect of the context switch can be taken care by increasing all the execution time by 2

so 10 will become 12 25 27 50 by it will become 52. So, that is what we have done increased all

the execution time by 2 millisecond because the context switch over it is 1 millisecond. And this

is satisfactory consideration of the injection time then we can apply our utilization bounds.

Let us straight away apply the completion time theorem for the task T1 12 < 50 schedulable, for

tasks T2 27 is its execution time and the higher priority task occurs 3 times, so 27+12*3 = 63 <

150 schedulable tasks T3 for this T2 occurs 2 times, T1 occurs 4 times sorry, its own execution

time is 52 and T1 occurs 4 times and T2 occurs 2 times.

So, totally 154 < 200. I hope this you are able to understand the same formula that we are

applying ei and ⌈ pi / pj ⌉ and here pi is 150 sorry, for T3 pi is 200. And we are applying for T1

which is 50. And therefore ⌈ 200 / 50 ⌉ = 4 and for the third term here, ⌈ 200 / 150 ⌉ = 2.

So, that is how we have got this expression and we find that even after considering context

switch still, it is schedulable, but we might have cases where the task set if we ignore the context

switch overhead is schedulable, but once we consider the context switch overhead it is no more

schedulable, there may be cases like that we have to be careful.

(Refer Slide Time: 20:18)

Now, we have a practice problem here we have 3 tasks T1 T2 T3, with their execution time,

deadlines and periods are the same. And there is a context switch overhead of 1 millisecond, we

need to check whether this is schedulable under the rate monotonic scheduler. And to consider

this, we need to increase each of the task execution time by 2 millisecond. So, this becomes 12,

this becomes 7 and this becomes 11. And then we apply the Liu Layland or if the Liu Layland

fails the completion time theorem. So, we will just leave this for you to work out.

(Refer Slide Time: 21:14)

Now, let us consider another important issue which is self-suspension. A task may self-suspend

itself under various conditions. One is that if it is, task is performing some input output

operation, it is reading a sensor or it is producing a command and so on. It may, we say that it is

self-suspending, we will see what happens in self-suspension and also if it is waiting for some

event to occur, for example, it might wait for a result from another task and then also itself

suspense itself. And when it self suspends, its execution is stopped, it is put in the ready queue.

So, when it self suspends, it is put in the blocked queue. So, the self-suspension introduces

adding an additional scheduling point. And once the tasks self suspends, then the next task in the

ready queue is dispatched.

(Refer Slide Time: 22:42)

Now, we need to define, redefine our scheduling points. So far, we considered the scheduling

points that are the point at which the scheduler becomes active and looks for a task from the

ready queue for dispatching, we had considered task completion and task arrival as the two

events on which the rate monotonic scheduler becomes active and starts the scheduling process.

But when we consider self-suspension that becomes another event, the self-suspension event in

which the scheduler would become active.

Now, to simplify our analysis, let us make a simplifying assumption that a task produces at most

one input sorry, it reads one input or it produces one output or it waits for one event, any of this.

So a job undergoes at most a single self-suspension. But we can relax this. If there are multiple

instance of self-suspension, we will just need to elaborate the result that we are going to present

in the next slide.

(Refer Slide Time: 24:19)

Let us denote the term bti, it is the delay suffered by the task Ti due to its own self suspension

and also due to the self-suspension of all higher priority tasks. And bi is the worst case self-

suspension time of Ti. Now, how do we compute bti, the worst case self delay the Ti you will

incur on account of self-suspension of itself and all other higher priority tasks, because self-

suspension of a lower priority task will not affect a task.

And the result is that the total delay suffered in the worst case is the sum of the self-suspension

times of itself and all other higher priority tasks.

(Refer Slide Time: 25:28)

So, if we consider self-suspension, we need to revise the rate monotonic utilization bounds, let us

do it for the completion time theorem and the completion time theorem, the execution time of the

current task is ei + bti because this is the delay due to all high priority tasks and Σ ⌈ pi / pk ⌉ * ek.

But if a task undergoes multiple self-suspensions, then the expression needs to be changed. So,

conservatively we need to consider that each task execution time increases by bti.

So, these tasks execution time increases bti and ek is execution time increases to ek + btk. So, just

like we are adding the overhead of context switch to the execution time, here also we add the

context, the self-suspension time of itself and all higher priority task into the execution time.

That is the worst case of course. But then, in all these real time analysis, we consider the worst

case situation.

So, we will, we are at the end of this lecture. We will stop here and we will look at few other

issues and then we will look at resource sharing among the real time tasks, how we handle

resource sharing without really creating scope for deadline misses. So, that is a very important

topic, but before that, we need to discuss few more issues regarding the rate monotonic

scheduler. We will stop here. Thank you.

