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Rate Monotonic Schedulability: Miscellaneous issues 

Welcome to this lecture. In the last lecture, we are trying to investigate a very important design 

problem in real time systems that is given a set of tasks, if the task set feasibly schedulable on a 

uniprocessor using the rate monotonic scheduler, since the rate monotonic scheduler is prevalent, 

it is used across many systems and uniprocessors in small embedded systems, they are being 

used in large numbers.  

It is a important problem to check whether a given task set is schedulable on a uniprocessor and 

we initially simplified the problem saying that the task set is independent, no resource 

requirement and so on. And possibly one of the very important results in checking the 

schedulability of a set of tasks is the Liu Layland result.  

The Liu Layland result is given in terms of a utilization bound for a set of n tasks and the 

utilization bound decreases with increase in the number of tasks and is given as multiplication of 

two terms that is n which is the total number of tasks into 21/n - 1. But then, we said in the last 

class that the Liu Layland result is a sufficient condition that is if Lui Layland condition is 

satisfied, the task set is guaranteed to be schedulable on a uniprocessor using the rate monotonic 

scheduler.  

But the result is bit conservative in the sense that even if a task set fails the Liu Layland criterion 

there is a possibility that the task set may be actually schedulable. And we were trying to 

investigate how to check if the task set fails Liu Layland's criterion, how to determine whether it 

is actually schedulable. And we had taken a few example and we are trying to apply the Liu and 

Lehoczky’s completion time theorem. Now, let us start from that point.  
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The Liu Lehoczks’y criterion is called as the completion time theorem and the mathematical 

formulation is given by this, here ei is the execution time of task Ti and pi is the period of task pi 

and T1 to Ti-1 are the higher priority tasks. And we know that a higher priority task when it is 

ready will preempt Ti and will run and therefore Ti will get delayed. So, the amount of delay 

suffered by a higher priority task is given by this expression.  

This is the number of time that task pj will execute during pi. If this is pi and there is a ith instance 

of pi and this is the second instance of pi then pj if it occurs once here then it may occur again 

after pj and so on. So the number of instances of pj is given by ⌈ pi / pj ⌉ and we are discussing 

why it is a ceiling. And we said that if this is 1000, and let us say, pj = 700, then let us say it 

occurred at around 700 once, it occurred after the first one for, immediately after pi, and then it 

may occur around 700 once.  

So, two instances, even though its period is 700, but two instances and we get that by ⌈1000 / 

700⌉. So, we do that for all higher priority tasks and multiply that by the execution time because 

each time it records it executes for ej. So, this is the mathematical formulation of the Liu 

Lehoczky’s completion time criterion.  

And if that is less than the period, that means the task will complete. And we assume that the 

period is equal to deadline. So that is the essential idea behind the mathematical formulation of 



the Liu Lehoczky’s criterion. And we had also seen how we can draw the schedule manually and 

check. 
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But suppose a task set also fails Liu Lehoczky’s criterion, it had failed Liu Layland's criterion 

and then we are saying that whether at all it can fail, it can pass the Liu Lehoczky’s completion 

time criterion but suppose it fails again then is the task set not schedulable at all? Can we say that 

or is there any further tests, okay, even if task set fails Liu Lehoczky’s criterion, there is a very 

small chance that it can be actually schedulable, the reason is this that the Liu Lehoczky’s 

criterion considers that all higher priority tasks occur in phase with this task that is zero phasing.  

But then in actual situation, it may not be the case. So with zero phasing, it may fail, but then that 

may not occur for some specific task instances. So if a task set fails Liu Lehoczky’s criterion 

still, there is a small chance, but that this task set is actually schedulable. But the chances are 

very small. And we do not have a closed formula like Liu Lehoczky’s and Liu Laylands to check 

that case.  

The only thing that possibly we can do is draw the schedule manually and check according to 

rate monotonic schedule, but I do not think that anybody while designing does design to that 

extent because the designs they leave some margin of accommodation, even if the tasks takes a 

little bit more time we should be able to tolerate that and not pack it with tasks so that even a 

small change will lead to a failure.  



So if it tasks it fails Liu Lehoczky’s criterion we need not look further, because it will make it a 

very aggressive design and live very little leeway. If some task a little bit gets delayed, then it 

will create a failure situation. So, if the task set fails Liu Lehoczky’s criterion, it is better to leave 

that and look for a more powerful processor or maybe simplify the code so that it takes less 

execution time and it satisfies the Liu Lehoczky’s criterion at least if not Liu Layland’s criterion.  
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Now, let us investigate the behavior of the rate monotonic scheduler, under transient overload. 

One good thing about the rate monotonic scheduler is that it is stable under transient overload 

condition. The transient overloads occur due to many reasons; maybe a lot of tasks came up at 

some time, a lot of sporadic tasks and so on.  

Or maybe all tasks came in phase at one instant or maybe one task due to some condition, it just 

kept on waiting for event and got delayed or maybe a task took a path which is not normally 

taken the code and it took a longer path in the code and got delayed. So, what happens in that 

case, you have a transient overload condition develops, how does the system behave under the 

rate monotonic schedule?  

The good thing is that it is guaranteed even if a task gets late; it will not adversely affect any of 

its higher priority tasks. But how can we tell it so confidently? What is the reason behind this 

assertion that if a task gets late due to some reason, the higher priority tasks will not get 

adversely affected.  



The reasoning behind this is that the way the rate monotonic scheduler works is that even if a 

task gets late, it has to yield the CPU when there is a higher priority task which is ready; always 

the higher priority task preempts the lower priority task. Even the lower priority task is missing 

its deadline does not matter.  

The higher priority task will preempt the lower priority task. This is unlike the EDF, in the EDF 

if a task is getting delayed, its priority, virtual priority keeps on increasing. But this is not the 

case with rate monotonic scheduler. And here the higher priority task will never be affected by a 

lower priority task getting delayed. So that is a good thing. The rate monotonic scheduler is 

stable under transient overload conditions. 
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Now, let us look at how the rate monotonic scheduler is implemented. In the very basic 

implementation of the rate monotonic scheduler, we maintain all tasks in a single FIFO queue. 

And when a task gets ready, we just add it to the FIFO queue. So, this is the FIFO queue and as 

the task becomes ready, even a higher priority task gets ready, it is added at the end of the queue 

and is the processor and the tasks are in the queue and the scheduler at every scheduling instant 

that is a task arrival and task completion.  

It will look through the entire task set in the queue and find out which has the highest priority 

and it will dispatch that task. So, searching will take O (n), not a very efficient implementation. 

A better implementation is to keep the task set in a priority queue. We know that a priority queue 



is a data structure, a heap data structure where the insertion takes O (log n), but searching takes 

O ( 1). So overall it is O (log n) definitely improvement over the very basic implementation. But 

can we do better? Yes, the way it is typically implemented is using a multi-level feedback queue.  
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Let us just look at that. If you look at the commercial operating system after some time we will 

discuss about the commercial operating systems. And there, we will see that they support the rate 

monotonic scheduling. By having a set of real time priority levels. We will see that all the real 

time system, all the real time commercial operating systems, they have two types of priority 

bands, one is called as the real time band, where the priority assigned by the programmer does 

not change at all.  

And then there is another priority set a priority, which is the dynamic band where non real time 

tasks are assigned and their priority keeps on changing. We will investigate why and so on later. 

Now, the number of priority, real time priority levels supported by the commercial operating 

systems is something like 16 or 32. And each priority level, we have a multi-level feedback 

queue. So, if tasks are priority 1 arrive, they are queued here, tasks a priority 2 arrive they are 

queued here and so on.  

Now, the scheduler at every scheduling point needs to just scan from here, highest priority, if 

there is a task at the highest priority, it just takes that and assigns to the CPU and that is over, the 

task has been selected. If there are none other tasks in the highest priority, then it looks at the 



next and so on. And since this is a fixed number of queue, 16 or something and therefore, it is 

constant time O (1).  

So insertion in the multi-level feedback queue, the insertion as well as the searching both take O 

(1) time, that is a very efficient good implementation and for small embedded system, it really 

helps and even otherwise also, because these are time constrained, the scheduler is required to be 

fast and therefore, the rate monotonic scheduling implementation is extremely efficient and 

therefore preferred.  
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Now let us look at some issues with real time task scheduling using a rate monotonic scheduler. 

First, let us look at the schedulability of harmonically related tasks in a rate monotonic scheduler. 

Now, what is a harmonically related task? A harmonically related task is that for every task i and 

k belonging to the set of tasks T, if Ti , Tk ԑ T and Pi > Pk, then Pi = n*Pk. So that means the tasks 

which are of higher period, they are multiples of the tasks having lower period.  

So if we have let us say, this is one example, let us say you have 3 tasks and their periods are 10 

20 60. For the task 20, the lower priority task is 10 and 10 divides 20., for 60 there are 2 lower 

priority tasks 10 20 and 60. So 10 and 20 both divide 60. We might have another higher priority 

task with period let us say 300. So 300 is divided squarely by all the 3 tasks.  



So this is the harmonically related task set. So just to summarize a harmonically related tasks that 

is one where any task with period Pi is a integral multiple of all each task which has a lower 

period, the period of a task is integral multiple of the period of a task having a lower period. So, 

this is an example, the execution time is 20 30 and 90, but the periods are 50 150 and 300. So, 50 

for 150, 50 divides and for 300 both 150 and 50 divided.  

So, this is another harmonically related task and for harmonically related task, we do not have to 

look for Liu Layland schedulability or Leo Lehoczky’s and so, on. Here, as long as the task set is 

harmonically related, the utilization due to tasks needs to be only less than 1 and then it is 

schedulable. So, the periods are multiples of each other.  

And in that case, we can achieve 100 % utilization of the processor, the application that we are 

developing if we notice that the periods happen to be multiples of each other and there we can 

easily schedule them on a uniprocessor because 100 % utilization can be allowed and still the 

task set is feasibly scheduled. 
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But can we mathematically show why for harmonically related set of tasks, the utilization bound 

is 100 % okay let us try here, by completion time theorem, we know that a task is schedulable if 

its execution time, and the execution time for all higher priority tasks during that period is less 

than the period of the task.  



So, these are all higher priority task k = 1 to i - 1 and the number of occurrence of a higher 

priority task k is ⌈ pi / pk ⌉ and the execution time is ek, now since it is a harmonically related 

task, we know that pi will be divided squarely by pk or pi is a multiple, integral multiple of pk. 

And if it is an integral multiple, then the ceiling is not required.  

It is only when there is a fraction we approximate it to the next higher level and that is the role of 

the ceiling. But since it is the integral multiple of pk, the ceiling has no role and we can remove 

the ceiling. So you can write ei / pi + Σ k=1..i-1 ek / pk ≤ 1 or we can bring Σ i=1..n ei /pi  ≤ 1  

So that is what the lowest priority task. And if it is shown for lowest priority task is less than 1 it 

will also hold for n - 1 that is last but lowest priority and so on. So, that mathematically proves 

that for a higher, for a harmonically related set of tasks. The utilization bound is 1, it is very 

important result.  
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Now let us compare the rate monotonic scheduler with the earliest deadline first scheduler, the 

rate monotonic scheduler typically in a commercial operating system, it is implemented as a 

multi-level queue, multi-level, first in first out queue, I am sorry, it is not priority queue it is 

multi-level first in first out queue and the complexity is O(1) and for EDF it is a priority queue or 

a heap and the complexity is O(log n) and therefore, the rate monotonic scheduler is more 

efficient than the EDF.  



Now, as far as the schedulability is concerned, if the number of tasks is large enough, then the 

CPU level utilization is only 69 % whereas, in an EDF full utilization or 100 % utilization can be 

achieved. Another comparison is that in the rate monotonic scheduler, the context switches are 

many, much more than the EDF, in EDF the context switches are less than the rate monotonic 

scheduler and we are arguing the other day saying that in rate monotonic scheduler, as long as 

there is a higher priority task is ready it will preempt any running task.  

But in EDF if they have the same deadline then it does not, the running task and the task that is 

waiting at the same deadline, absolute deadline, it does not really preempt and also the task as 

long as the deadline is less than the other tasks there is no preemption. So, the context switches 

are less in EDF. But then, we said that for a large number of cases they produce identical 

schedules.  

So, the context switches are similar, but then for more aggressively utilization, more aggressive 

utilization of the processor, we had taken an example actually and if you look at that example, 

you will see that the context switch of the rate monotonic scheduler is more than EDF. So, we 

can say that in general the context switches in the EDF is less than the rate monotonic scheduler, 

but in a general case, they may be identical, but never is the rate monotonic scheduler produces 

less context switch, its either the same or more.  

Now, the guarantee test to check whether a set of tasks is actually schedulable under rate 

monotonic scheduler on a uniprocessor we had a series of steps to apply. We had the we had the 

Liu Layland result and we had the Liu Lehoczky’s completion time result and even after that, we 

do not know if that fails the Liu Lehoczky’s completion time, we do not know whether the task 

set is still not schedulable or there is a chance that it is schedulable.  

On the other hand in the EDF as long as the utilization is less than 100 percent it is guaranteed 

that EDF will feasibly schedule that task set and we can see that the rate monotonic scheduler 

has some big advantages namely the efficiency of the scheduler. The implementation is much 

simpler and efficiency but otherwise for all other cases. So, only this case the rate monotonic 

scheduler scores over EDF as far as the efficiency and simplicity is concerned but for all other 

considerations that we have shown here, the EDF is better.  



So, for this case first case, the rate monotonic scheduler is better. But, there are some things 

which we have not shown here which are big disadvantages for EDF. But for that the rate 

monotonic scheduler does very well. And if you remember we had said that resource sharing and 

transient overload, behavior under transient overload the rate monotonic scheduler is stable 

whereas the EDF is not stable and that is a very important thing in real time systems that stability 

under overload conditions and the second is resource sharing, efficient resource sharing 

supported by rate monotonic scheduler, but not by EDF.  

So, over that the rate monotonic scheduler really scores over EDF and therefore the rate 

monotonic scheduler is used across a vast majority of the real time and embedded applications, 

the applications of EDF are relatively few. So, we will, we are at the end of this lecture, we will 

stop here and from this point, we will continue in the next lecture. Thank you.  


