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Rate Monotonic Schedulability Analysis 

Welcome to this lecture. In the last lecture, we were discussing about the rate monotonic 

scheduler, a very popular scheduler for real time and embedded applications and we were trying 

to address a very important design problem that is given an application, can this, the task set in 

the application feasibly run on a universal that is they meet all the deadlines, if the priorities of 

the tasks are assigned according to the rate monotonic principle. 

And we had looked at the necessary condition and the sufficient condition which is the Liu 

Layland condition and we said that the Liu Layland condition is a bit conservative, if it passes 

the Liu Layland condition okay no worry the task set will can be run satisfactorily on a 

uniprocessor. But if it fails, then we need to look further. Specifically, we need to apply the 

completion time theorem to check that whether really it cannot be run or is there a chance that 

they are unsatisfactorily on a uniprocessor. So let us proceed from that point.  
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Let us look at an example. We have a task set consisting of two tasks. The first task takes 2 units 

of execution time every 4 unit, the second task requires 4 unit of time every 8 units. Now is this 

task can be feasibly scheduled on a uniprocessor. First, we can try the Liu Layland condition, for 



that we need to compute the utilization. Now the utilization due to the two tasks is 100 %. But 

then the bound given by the Liu Layland is 0.82 and therefore the, according to Liu Layland 

condition this cannot turn feasibly on a uniprocessor.  

But let us check further. Let us try to draw the schedule according to a rate monotonic scheduler 

and see that whether the task set runs feasibly and all the deadlines are met. So, the task 1 is the 

highest priority because the period is 4, task 2 has a higher period and therefore its priority is 2 

and a time 0 both tasks arrive or in other words their phasing is 0 and initially T1 runs for 2 units 

of time and at that point T2 can run for 2 units of time and T1 again arrives at 4 and T1 starts 

running for 2 units of time and T2 runs.  

So by 8 unit T2 completes T1 of course it has completed all its, it has met all its deadline and 

even T2 has met its deadline, we can draw the schedule as long as we can. And we will see that 

all the schedules are met. So can we formalize this and find out whether a task set when we 

check manually it is schedulable and Liu Layland result says that it is not schedulable. So that we 

will give in terms of the completion time theorem. So some tasks that failed the Liu Layland test 

might actually be schedulable under a rate monotonic scheduler on a uniprocessor.  
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If we look at the schedulability results so far, the utilization bound 1 it said that the utilization 

due to tasks ≤ 1 and utilization bound 2 which is the Liu Layland criterion, it provided a bound 

through an expression consisting of two terms. So, the task set as long as its utilization lies 



between U2 and U1, ok as long as it exceeds U1 it is not schedulable and if it is below U2 it is 

schedulable, we have shown that using green, but between U2 and U1 that is the question mark.  

And that we will check using the Liu and Lehoczky's completion time theorem. If the bound, if 

the actual utilization lies between U2 and U1, if it is more than U1 we can say that it is not 

schedulable but if it exceeds U2, but less than U1, we need to check further using the Liu 

Lehoczky’s completion time theorem.  
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Now, let us try to understand the completion time theorem which was given by Liu Lehoczky in 

1989. The theorem states that if we consider all the tasks under zero phasing, so that means the 

tasks might be arriving, the first instance of task might arrive at any phase. Let us convert all 

tasks to zero phasing, assume that all tasks have zero phasing.  

And under that, if we check the each task individually, and check that they meet their first 

deadline, we do not have to look further, we just look till the first deadline under zero phasing, 

then we can confidently say that if the first deadline is met, then the task will keep meeting all its 

deadline and what is the basis of this theorem, which confidently says that, if the task set meets 

its deadline, first deadline, just need to check one deadline under zero phasing then it will keep 

meeting all its deadline.  



What is the basis of this statement? The main basis here is that when the tasks, all tasks arrive at 

zero phasing that is all arrived exactly at zero time. And that is the worst case for all the tasks, 

any task that needs to miss its deadline will miss here, in their first deadline when all the tasks 

start at the same time. So, if we can check the worst case and see that all the tasks are meeting 

their deadlines, then we can confidently say that the tasks will meet any of their deadlines.  

So that is the crux here. Let me just repeat that once again. That zero phasing gives the worst 

case execution time or completion time for all tasks, the zero phasing, under zero phasing every 

task will have its worst case completion time. And if all tasks meet their deadlines under the 

worst case completion time, then definitely the task set is schedulable.  
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So, to apply this, one possibility is that we consider zero phasing for all tasks, even if some 

phasing is given for the tasks like 100 or 500 for different tasks, we just ignore that we assume 

that all tasks arrive at zero, then we just draw the schedules for first deadline using the rate 

monotonic principle, and then see if all the first deadlines are met, then we will say that the task 

set is schedulable otherwise not.  

But one thing is that if there are a dozen task or two dozen tasks and we are trying to draw the 

schedule manually for every task not only there is a chance of error to apply the rate monotonic 

principle, but it is also cumbersome. Can we have a mathematical expression which you can use 



and check that whether they satisfy the completion time theorem, so, that we will just try to 

discuss the mathematical expression for completion time theorems?  
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But one thing is the basic premise of the completion time theorem based on which it is founded 

is that when all the tasks in application arrive at the same time, let us assume at zero time, then 

the worst case completion time for all tasks results, there is the main idea here. Main observation 

actually, that when the tasks arrive exactly at the same time, then the tasks will have their worst 

case completion time, we will just take an example to show that. 

Assume that we have a task set, two tasks T1 has execution time 10 and a period of 30, T2 

execution time 60 and period 120. Now, the phasing of T2 is 0, so this starts exactly from 0 time. 

And this also starts exactly at 0 time. So, this is zero phasing. Now, under zero phasing, we can 

draw manually the schedule and find that T2 need 60 units. So, it got here 20 20 and 20. So, by 

90 T2 could complete and T1 of course, it completed at 10 because it is the highest priority.  

So, the priority 1, T2 is priority 2. So T1 can complete at 10. But if we draw the schedule, you 

can try that yourself and see that T2 completes at 90. Now, let us assume that they do not arrive 

at the same time, but there is a phase difference T2 has zero phasing. So, it arrives at 0 and T1 

arrives at 20. Now, we can draw here and check that T2 completes at 80 and T1 of course 

completes within 10 of its arrival time.  



So, the completion time of T1 still it is 10 but T2 instead of 90 became 80 because they came in 

different phases, if they come exactly at the same time, their arrival time is exactly on the same 

time for all tasks, then that is the worst case completion time of the different tasks. So with this 

example, we are just trying to illustrate that the worst case completion time for a task occurs 

when it is in phase with its higher priority tasks.  

The highest priority task will not be affected even if it is in phase with other tasks because it will 

anyway run whether it is in phase or not, it will anyway have the highest priority run.  So, a 

lower priority task would have a larger completion time if it is in phase with its higher priority 

task compared to when it is out of phase with its higher priority task. So that is the basic premise. 

And therefore it says that check the first deadline under zero phasing and if the task set meet 

their respective first deadlines, then the task set is feasibly scheduled.  

(Refer Slide Time: 14:30)  

 

But can we give a mathematical formulation for the Liu Lehoczky’s completion time criterion; 

the criterion is that for a task Ti, we can check its first deadline. It will meet its first deadline. If ei 

is the execution time of the task, and for all its higher priority tasks, which are priority 1 to j, j = i 

- 1 we have arranged the tasks such that Ti the higher priority tasks are T1 to Ti-1. Now, we need 

to check with respect to all the higher priority tasks, we need to compute this term.  

So, the execution time of the task Ti is ei and for each of these tasks, we need to check pi / pj 

where j is between 1 to i - 1 and we take a ⌈ ⌉  of that, ⌈ pi / pj ⌉ * ej. So, what it means really is 



that how many times the higher priority task arrives within the period of pi. Let us take an 

example. If we have two tasks, let us say one task is takes 2 units of execution time every 10 

units this is T1 and T2 let us say takes 4 units of execution time every 25 units.  

Now, whenever T1 arrives, it will preempt T2 because T1 is higher priority and T2 is lower 

priority but then how many times will T1 arrive or how many times will T1 preempt, when T2 is 

ready, the T2 is 25 unit once it arrives here and its deadline is 25 or the period is 25 both period 

and deadline are 25. So, this is T2 and T1 can arrive at most three times because it is period is 10. 

So, if it arrives here, it can arrive here at 20 sorry, 0 and then 10 and then 20 or if it arrives at 1, 

11 and 21.  

So, at most it can arrive three times and how do we get three times, three times is ⌈25/10⌉ =3. 

So, like that we compute what is the maximum number of times that a higher priority task can 

arrive before a lower priority task completes and that is given by ⌈ pi / pj ⌉ * ej because each time 

a high priority task arrives it will execute for ej, we will take some examples and see how to use 

this result.  

But this is a crucial result. If you are developing a real time application using a rate monotonic 

scheduler, you are very likely to use this result. Now let us therefore look at it with some 

examples and see how to apply this result.  
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First is, let us take one example application, execution time is 20 and period is 100, task 2 

execution time is 30, period 150 and task 3, 60 and 200. And now we check whether the task set 

is the rate monotonic analysis. We can do the analysis and be sure whether it can be feasibly run 

on a uniprocessor and given an application like this, the first thing is we compute the utilization 

and then check the utilization bound 1 which is it is less than 100 if it exceeds 100 we do not 

have to look further, it is not schedulable. 

And if it is less than 1 we check the Liu Layland criterion and if it meets Liu Layland criterion, 

nothing to look forward it will run, I mean nothing to check further it will learn and if it fails the 



Liu Layland criterion then only we use the completion time theorem. So we first compute the 

utilization due to the three tasks and it turns out to be 0.7 which is less than 0.78 and therefore 

the task that passes Liu Layland criterion, do not have to look further.  
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But let us look at this example. Again we have three tasks, 20 is execution time, 100 are the 

period and deadline, 30 and 150, 90 and 200. Now, let us try to compute the utilization and apply 

the Liu Layland criterion. So, this is 20 / 100 = 0.2, 30 / 150 =  0.2 and 90 / 200 = 0.45. Now, if 

we sum it up, it will become 0.85 and three tasks we know that the Liu Layland bound is 0.778 

and it is exceeding 0.778, 0.85.  



So, 0.85 is the utilization due to the tasks and which is much greater than the Liu Leyland bound 

of 0.778 and therefore, according to the Liu Leyland criterion, this task set cannot be feasibly 

scheduled on a uniprocessor using a rate monotonic scheduler. Now, let us try the completion 

time theorem. Before we say that this task set cannot be physically run because it fails Liu 

Layland test, let us try to use the completion time theorem at the Liu Lehoczky’s criterion. 
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One is about manually checking the criterion where we assume zero phasing and check whether 

they meet their first deadline here T1 is priority 1, highest priority, T2 is the second highest 

priority and T3 is the third highest priority, initially T1 will run because it is the highest priority it 

will run for 20 milliseconds and then T2 will run once T1 completes, it will run for 30 

milliseconds and T3 needs 90 millisecond but then at 100 T1 will again arrive.  

So T3 can run here for 50 millisecond but T1 again arrives and it runs for 20 and the T2 okay, T2 

arrives at 150 okay, so, just a small problem here, but we can check here that T3 will run here 

and then T2 arrives. So, T2 has met its deadline, the T2’s T1’s deadline was here it has completed 

much before the T1 deadline is met, T2's deadline is also met and we can see that the T3’s 

deadline is also met. So we can draw the schedule properly. T2 actually arrives at 150.  

So here T2 will run and we will check that T1 T2 T3 all meet their respective deadlines. Now can 

we check it with the expression. 
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Now for the first task, there is no higher priority task. So 20 < 100. So trivially the first task will 

meet its deadline. The second task is its execution time is 30 and ⌈150/100⌉ = 2 and the higher 

priority task is T1. So 30 + 20*2 which is 70 < 150. So T2 will also meet its deadline and for T3 

there are two higher priority tasks. So, its period is 200 and ⌈200/100⌉. For the first task 

⌈200/100⌉ = 2 and 20*2 that much will be required for the first highest priority task and the 

second priority task that will be ⌈200/150⌉ = 2. 

So 30 for the second priority task 30*2 =60. And the task itself requires 90. So, 90 + 40 + 60 = 

190. So, it meets its deadline, we can confidently say, but for the manual drawing just see that 

even after carefully drawing, we had drawn, made a mistake here actually that T2 arrives at 150. 

So, once it arrives at 0 and the next time it will arrive at 150. So, T2 will run here and T3 will run 

here.  

So, just see that the manual drawing is erroneous, cumbersome, but we can apply the formula 

and we can easily show that the task set whether it meets its completion time theorem or not. 

And for this case, it fails the Liu Layland test, but it passes the Liu Lehoczky’s criterion or the 

completion time criterion and therefore, the task set is schedulable. We are at the end of this 

lecture. We will discuss about some other issues, important issues with the rate monotonic 

scheduler that is in the next lecture. We will stop here. Thank you. 


