
Real Time Systems

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 16

Variants of EDF and Rate Monotonic Scheduling

Welcome to this lecture. In the last lecture, we were discussing about EDF, the Earliest Deadline

First Scheduling algorithm. It is an important algorithm because it is the optimal algorithm. If

EDF cannot run a task set feasibly then there can be no other scheduler, which can run that task

set. And the EDF algorithm is very simple, it is optimal, but then it is very rarely used and we are

trying to examine the reasons behind why EDF is not being used, what are its disadvantages.

(Refer Slide Time: 2:10)

And we identified three main reasons, three main disadvantages of EDF. The three main

disadvantages are; one is that poor transient overload handling. What it really means is that

whenever a task that is running is delayed due to some reason, maybe took a path in the program,

which is very uncommon, it is a long path, and it is being delayed.

It got into an infinite loop somehow or maybe that it is waiting for some event or some resource

it was delayed and then this algorithm EDF, it behaves very counter intuitively at this time. It

just keeps on increasing the priority of that task to higher and higher levels; that means that other

tasks can have to wait, this task is not preempted, because it has the shortest absolute deadline.

And in that situation, which tasks will miss their deadline is not we cannot say you cannot

predict and also which critical task will meet deadline we cannot predict at the beginning. If

some task is delayed, depending on the situation at that time, even the most critical task may

miss its deadline, so this is a big disadvantage of EDF.

The second disadvantage is runtime inefficiency. The naive very simple implementation we

discussed about keeping them in a queue is O (n) for n tasks, a complexity, time complexity is O

(n). But even if we use a more sophisticated data structure still it is O(log n), but we will see that

for the rate monotonic scheduler, the complexity is 1, which is much more efficient compared to

EDF. The third and more vexing problem is the poor support for resource sharing among tasks.

As long as tasks, they share some resources, which is normal in any practical application the

tasks share resources maybe partially produced results, the share, part of the result is completed

by a tasks passed on to another task again, complete some part and again gives us back etc., that

normally happens. But if that is the case, then tasks can miss their deadline using EDF. So, these

are three major problems with EDF and this is possibly the reason why it is not popular.

(Refer Slide Time: 04:08)

The poor transient overload handling is that a transient overload occurs when a task takes more

time than estimated, maybe because it got into an infinite loop or it took different path in the

program and so on. Or the overload can occur when there are too many tasks that arise at some

event. And when such transient overload occurs in EDF it becomes to predict beforehand that

which task is going to miss its deadline, it is a big problem.

Because every system there are some critical tasks and the tasks which are not so critical, for

example, a task which logs the result for an audit trail, the results are log, that is not so critical

because even if the logging is delayed little bit, no problem, but then the one which let us say a

chemical plant, it should shut off the chemical reaction in some situation if that gets delayed,

then that is going to be dangerous. So, in such situations, EDF becomes difficult to use, because

we do not know that whether some time the task most critical tasks will miss their deadlines.

(Refer Slide Time: 05:36)

Runtime inefficiency in a very simple data structure like queue text O(n), but even if you use a

priority queue, it may take O(log n) and log n O(log n) is also O (log n) is also not a very

efficient scheduler, because the rate monotonic can schedule in O(1) time.

(Refer Slide Time: 06:09)

And when there are sharing of non preemptible resources, critical sections among tasks, first is

that if we devise a solution, which will let the task share without causing much problem, then the

algorithm becomes extremely inefficient. And if we use a simpler algorithm for resource sharing

the tasks can miss their deadlines due to something called as a priority inversion.

And this issue, we will discuss a little later in more detail that why EDF has so poor

characteristic with respect to resource sharing support, whereas the rate monotonic algorithm, we

have efficient ways for tasks to share resources without any causing deadline misses.

(Refer Slide Time: 07:04)

So far, we have been discussing that the task period and the deadline are the same, pi = di. All the

examples we had taken and we had implicitly assumed in our schedulability expression for EDF

is that pi = di. But it may so happen that the pi, the period is greater than deadline, so deadline

occurs before the period and in rare cases maybe pi < di.

So, these two cases, the expression that we discussed does not hold, we need to generalize the

schedulability check expression. Now, let us just give that expression, we need to change ei / pi

into ei / min (pi,di). So, if pi is greater than di, then it will be ei / di, and if pi < di, it will be ei / pi,

not really we are discussing about the first case actually, pi > di then it will be ei / di ≤ 1.

But in the second case, for the first case when pi > di then this expression ei / min (pi,di) which is

basically becomes ei / di < 1, this is the criterion for schedulability of a set of tasks, but for the

second case when pi ≤ di, it becomes a sufficient criterion, but not necessary criteria. We will not

go details into this, but you can read up in the books we will not discuss in the lecture here, the

implications of this, just mentioning the general schedulability check.

(Refer Slide Time: 09:36)

Now let us look at the implementation of EDF. The simplest implementation is a FIFO queue, so

we just have one queue, and here the tasks are just inserted at the end of the queue and the

scheduler selects, it needs to traverse through the queue and select the one which is having the

smallest absolute deadline. But we can also have a priority queue.

So, here we insert into the queue based on their absolute deadline, each time a new task comes

arrives that is an instance of the task, we need to examine its proper place in the queue and for

that the efficient data structure is a priority queue, but here, insertion of a task is O(log n). And

that will be the complexity of implementing EDF using a priority queue.

(Refer Slide Time: 11:01)

Now, before we conclude our discussion on the EDF we are not spending too much time on the

EDF, because it is not a very popular scheduling algorithm and it is not very efficient. So, we are

not spending too much time, we will just discuss a small variation of the EDF which is called as

the maximum laxity first, sorry, the minimum laxity first MLF, the minimum laxity first

algorithm. And here unlike the earliest deadline first where the absolute deadline is checked at

any point of time, and the task having the smallest absolute deadline is picked up for scheduling.

Here the laxity of the task is computed and the task having the minimum laxity is taken up for

scheduling. Now, how do you define laxity? Laxity is the relative deadline - the time required to

complete the task execution. So, if this is the deadline and this is the execution time, and we are

trying to compute at this time, the laxity will be L which is from the current time till the deadline

of the task, the absolute deadline on the task.

So, if this is the absolute deadline and this is the, so let me just change it to absolute deadline, I

think that will be more accurate, the absolute deadline is this and the current time instant is t and

the time required for the task to complete is let us say Δt, then if this is A, then A - Δt, this is the

one is the laxity. We can think of laxity as how much I can delay this task, before it will fail. So,

the one having the smallest laxity is going to fail first.

So, the complexity of computing the laxity is that we have to consider how much computation

time is remaining for that, which is a bit difficult, because normally we give a very well worst

case complexity and each time we need to consider how much computation remaining and then

how much lax time is there and then subtract that from there, it is much more involved.

Earlier, we were just computing the scalability or the scheduling of a task based on its deadline,

but here we also need to consider the computation, the worst-case computation time. And the

worst case computation time or the WCT is measured with respect to the worst case path the

longest path in the execution of the task.

So, for a task to compute the worst-case execution time, we need to check for various events,

various types of situations where it takes different paths through the task, which is the worst-case

path. And that gives us the worst case computation time and based on that the execution time is

decided, and we need to use that here. So, it is a variation of the EDF, it is slightly more

complicated, but for some situations may slightly give better results than EDF.

(Refer Slide Time: 15:48)

And here a task with zero laxity needs to be scheduled straight away, because unless it is

scheduled right, then it is bound to miss its deadline. So, task with zero laxity has to be

scheduled, otherwise there will be a failure in the system. But what about a task with negative

laxity? Negative laxity means that this task will miss its deadline no matter when it is picked up

for execution.

(Refer Slide Time: 16:27)

If we think of it, the minimum laxity first there will be more number of context switches. The

reason for this is that the laxity changes at runtime, as the task computes the laxity keeps on

changing and here a task which was very high priority need not be so, when another new task

arrives, we find that the laxity has changed.

So, intuitively we can argue that there will be higher number of context switches in MLF

compared to EDF and also in EDF we need to consider the execution time and remember the

execution time is the worst case execution time and therefore, it does not really give a true

picture of the actual execution time. And that way the EDF it just considered the deadline and

how will we compute the worst case execution time, the success of MLF depends on that, it is

less popular than EDF due to these reasons.

(Refer Slide Time: 17:57)

Now, let us look at the static scheduler. So, far we have been looking at the EDF - Earliest

Deadline First, which is a dynamic priority scheduler. Let us look at static priority scheduler, the

Rate Monotonic Scheduler or the RMS and this is, I can say that it is the most popular real time

task scheduler in embedded real time applications. Most of the operating systems they some way

support real time, sorry, the rate monotonic schedulers to be used. Since it is so popular, let us

look at it in more detail.

(Refer Slide Time: 18:57)

The Rate Monotonic Scheduler really means that the priority of a task increases monotonically

with its rate, the rate basically is the rate of arrival, the rate of a task is it’s the rate of arrival is

that how short is its period, the higher is the rate of arrival, the shorter is its period, the higher is

its rate of arrival, and the higher is the rate of arrival the higher is the priority of the task. The

priority of a task increases monotonically with respect to its rate or the frequency.

So, if we have one task, which takes take’s 1 unit of execution time every 20 units and another

task which takes 5 units of execution time in every 100 units, then the rate of this is 1/20, and the

rate of this is 1/100. So, the rate of the first task T1 is much more than T2 and T1 will have a

much higher priority, which is 1/20, compared to the second task, which is 1/100. So, that is the

meaning of the rate monotonic scheduling.

(Refer Slide Time: 20:46)

Let us, understand the rate monotonic scheduling, let us say there are two tasks, written as

process 1, process 2. See here that the process 1, the instances of the task appear very rapidly, the

rate is very high and the process 2, the rate is low, so the for the first one, this is the rate, this is

the period. I can show here that this is the period and this is the execution time and this is the

period. For the second task, this is the execution time and this is the period.

So, this is ei and this is pi. And obviously, the first task has will be given higher priority

according to the Rate Monotonic Schedulers, because it is occurring very frequently, the rate is

very high compared to the second task, which is occurring less frequently. And if we look at how

they will be scheduled by the scheduler, first the process 1 will be taken up for execution, as

soon as process one completes, then only the process 2, see both of them are occurring together,

but process 2 will take up only when process 1 completes.

And again as soon as the process 2 arrives process sorry process 1 arrives, process 2 will be

preempted and the process 1 will be run and is it process 1 completes the remaining part of the

process 2 will be taken up and so on. So, as long as there is a instance or process 1 that will run it

has higher priority, it will preempt even the running currently running process 2.

(Refer Slide Time: 22:59)

As we have been saying that this is the optimal uniprocessor static priority task scheduling

algorithm, if a task set cannot be scheduled using the rate monotonic scheduler, then there cannot

be any other static priority scheduler which can schedule that task and we meant by static

priorities that once the priority of a task is computed it does not change.

So, if we have three tasks let us say T1 is 100, 100 and T2 is 5, 50, 50 and T3 is 3, 75, 75, so the

execution time of T1 is 1 period is 100 and deadline is 100. The second task execution time is 5

period is 550 and deadline is 50, so in this case using the RMS we will assign the highest priority

to T2, let us say the highest priority is indicated by a number like 1.

Priority 1 has the highest in operating system, then the program will assign priority of 1 to T2,

priority of 2 to T3 and priority of 3 to T1. And if a task set that cannot be run using RMS then no

other static priority algorithm can run that task set feasibly. Now, how do we know given a task

set like this? How do we know whether that is feasibly schedulable in RMS or not?

For that, we will give some schedulability expressions in terms of the utilization bounds; the

utilization bound is what is the maximum utilization up to which the task set can be considered

schedulable under RMS. Now, let us look at those utilization bounds.

(Refer Slide Time: 25:39)

The first is utilization bound 1 which is the utilization due to all tasks should be less than 1, of

course, any tasks requiring utilization more than 1 cannot be run and trivially this utilization

bound holds for all scheduling algorithms, this is a trivial utilization bound but we need to check

the utilization is more than 1 we can straight away say that it is not schedulable, with any of the

scheduler, if the utilization bound utilization due to the tasks is more than 1 it cannot be

scheduled.

So, this is a necessary condition for scheduling if the task set is meeting the utilization bound that

is some of utilization is less than 1, then it is necessary for scheduling but if it is met, it does not

mean or does not guarantee that it is schedulable under RMS, the rate monotonic scheduler, but

unless this is met, we need not check further, so this is a necessary condition.

(Refer Slide Time: 27:07)

Now, let us look at the sufficient condition, the sufficient condition was given by Liu and

Layland way back in 1971, nearly 50 years back, so they gave this expression with rigorous

proof that if the ∑1..n ≤ n(21/n - 1), then the task set is guaranteed to be schedulable. So, this is a

sufficient condition.

If this is satisfied, we did not look any further, but on the other hand even if this is satisfied, it

not satisfied, then the task set may be schedulable that we will look at a little later, but to

consider the implication of this, let us say we have only a single task, so then n = 1 and this

bound for number of tasks n = 1, it becomes 1(21/1 -1) = 1.

Or in other words, as long as there is a single task, even up to 100 % utilization, that task can be

feasibly scheduled, but what about n = 2 then this expression becomes 2(21/2 - 1) = 1.414 – 1 =

0.828, so nearly 83 %.

So, up to 82.8 % utilization two task sets can be run. Now, what about 3, T = 3, n = 3, so here if

we compute 3(21/3 – 1) = 0.779, we will get 0.779. So, the utilization bound decreases with the

number of tasks, with a single task it is 100 %, 2 tasks it is 0.828, 3 tasks it is 0.779, then 0.773

and so on.

And but as the number of task increases it saturates at around 0.69, even if we have infinite tasks,

the bound remains at 69, we can show that result and the main idea here is that a task set can be

scheduled, the sufficient condition for scheduling is that n(21/n - 1) ≥ ∑1..n .

And this bound n (21/n -1), if we substitute various values of n, the number of tasks 1, 2, 3, 4, etc.,

we will see that it falls, but then it stabilizes after some time. You can also check taking larger

values of n, see how the graph behaves, the utilization bound behaves, and we will look further

into the task schedulability.

Because this is a very important topic that given a set of tasks whether it will be rate monotonic

schedulable, then only we will proceed with designing the system will assign priorities, the tasks

and will take up implementation of the software and so on. First we need to check or analyse

whether the task set is schedulable. So, we are almost at the end of this lecture, stop here, and we

will continue from this point, in the next class we will take more example and more insight into

the utilization bound that we will do in the next class. Thank you.

