
Real Time Systems

Professor Rajib Mall

Department of Computer Sceince and Engineering

Indian Institute of Technology Kharagpur

Lecture 12

Frame Size Constraints

Welcome to this lecture, we have been discussing for last one or two lectures about clock driven

scheduling. Clock driven scheduling is used in simple small embedded systems, but then their

number is very high and we discussed three clock driven schedulers, one is the round robin,

which is not really a real time scheduler, because it does not do anything special to meet the

deadlines of the real time tasks.

We looked at the table driven scheduler, the basic table driven scheduler, extremely simple

concept, the schedule table and then we store the schedule table for a certain duration which is

given by LCM of the periods of the tasks, periodic tasks and each time, a one shot timer is set,

each time the scheduler is invoked, based on a timer alarm, it selects the next task and sets the

one shot timer.

And this is executive, it is not an operating system, because it does not have many features only

for simple applications, very simple scheduler which itself is the operating system. But then the

main problem here is that it has a lot of overhead in terms of setting the one shot timer, each time

there is the alarm timer, alarm it sets the time set again, so we had improvised scheduler which

we called cyclic scheduler.

And we had the concept of a major frame, which is LCM of the periods of the tasks, periodic

tasks and then the minor frames, the major frame contains an integral number of minor frames,

minor cycles or frames and the tasks are assigned to the frames that was the main idea and here

the periodic timer is set only during initialization do not have to set it again and again. So, let us

proceed with that. One of the important design criteria here is about selecting the frame size.

Now, let us see what are the constraints on the frame size that must be satisfied for the scheduler

to work properly and how do we select those, let us proceed.

(Refer Slide Time: 03:06)

In cyclic schedulers, there are three main frame size constraints. One is that, the frame size must

be larger than every job. In other words, preemption is not required, all job complete within one

cycle, it is not required that a job is preempted to be part of the job to be done in another frame,

that requirement is not there, so the frame is larger than every job, that is the first requirement on

the frame size.

This we express as a frame size, f is greater than equal to the maximum of the execution time

which we have written as Ti is the execution time, maximum of that are all tasks in the system.

The second constraint on the frame size is that the major cycle should have an integral number of

frames or in other words, the frame should squarely divide the major cycle and we said that the

major cycle is also called as the hyperperiod.

And the third constraint is that between the release time and deadline of every job, there should

be at least one frame. The first two we had discussed in some way in the last lecture and these

are very intuitive, the first two with somebody can easily guess why we have these two

constraints that the frame size is larger than the execution time of every task and also the frame

sizes squarely divides the hyperperiod or the major cycle or the major cycle contains an integral

number of frames.

Now, the third one, let us try to understand that between the release time and the deadline of

every job, there must be a full frame, just draw one figure here. So, here the release time of the

task is t′. So, this is the release time or the arrival time and this is the frame tick, so just after the

frame, the task has released and the deadline of the task is here, so the task is released at t′ and its

deadline is t′ + Di, where Di is the relative deadline for that task.

And within this duration, there must be one full frame. So, t + f and t + 2f, there is a frame here

and then that is a feasible frame size. But if t′ + Di were somewhere here, if t′ + Di it was

somewhere here, then we would, it would not be possible to execute this task. We will see the

reason why that is so, in the next couple of slides, but this is an important requirement that

between the release time and the deadline of the task, there must be one full frame.

(Refer Slide Time: 07:14)

So, just written down the same thing that the minimum scheduling overhead and chances of

consistency, this is the requirement that the frame size should be larger than the task size.

Otherwise, the scheduler becomes complicated, it has to save the context of the job and then

restart the job in other frame, makes the operating system complicated and not only that, we had

said that it is just one program and there is no locking mechanism etc. are not followed, because

every task completes and then the next task starts, so there is no requirement for semaphores and

so on.

So, the frame size should be larger than each task size, is the first requirement and the frame size

should be such that there are an integral number of frames in a major cycle, here since there are

integral number of frames in the major cycle, we can just store the schedule for one major cycle

and keep on repeating that.

But, if there is a fraction of a frame in a major cycle, let us say 3.4 frames in a major cycle, then

we cannot repeat, we need to store much larger schedule, rather than the major cycle and the

second requirement where we say that the frame size should squarely divide the major cycle, so

that gives us few possible frame sizes, let us say the major cycle is 12, then the integral multiples

of frame can be obtained by setting the frame size, let us say the major cycle is 12, then the

frame sizes can be 12 it can be 6, 4, 3, 2, 1, so the second requirement allows only a few discrete

number of frame sizes.

The third one satisfaction of task deadline, there must be at least one full frame must exist and

that sets an upper bound on the frame size. So, let us just discuss these three constraints in some

more detail to convince you that what is this for and how do we select, let us investigate this little

bit more and then we will take some examples, because this is the crux of the design of a system

with a few periodic tasks to be run using a cyclic scheduler.

(Refer Slide Time: 10:53)

Now, first look at frame size larger than the task execution times. If we do not let this happen

that each task completes in the frame size or in other words, if the task size is greater than the

frame size, then a task will not complete in a frame size. So, not only that for running one task

the scheduler runs multiple times, but also the cyclic scheduler becomes complicated and we had

said that one of the motivation for using the cyclic scheduler is that it is a very simple scheduler.

If we cannot let a task complete, we need to implement several difficult features in the operating

system. For example, saving the context of a task, restarting at a later time, maintaining the

consistency, because halfway it has used the resources and then got preempted and then another

task ran, so it will use a partial result and that can make the final result inconsistent.

So, unless a job runs to completion, the partial results will be used by other jobs leading to

inconsistency and for a job to run in to completion without any preemption, we need for the job

to be completed in a single frame. So, this requirement is quite obvious, that frame size larger

than task execution times to maintain the simplicity of the executing.

(Refer Slide Time: 13:04)

Now, the frame size squarely divides the major cycle unless it squarely divides, we cannot really

store the schedule for one major cycle. Here, just see that there are an integral number of frames

in the major cycle. So this is 0, the first frame, the second frame, third frame, fourth frame, fifth

frame and then it starts from the zeroth frame. Now, let us imagine that there was a frame which

was only partly here, then we cannot really store the schedule up to the last frame, because it

would not repeat.

(Refer Slide Time: 14:15)

Now, let us look at the third constraint that between the task arrival and its deadline a full frame

must exist. Because if there is not even a single frame, the task might miss its deadline, because

the task will not get a full frame to execute. Let us, look at this situation given in this diagram,

these are the frames, the blue, pink etc., these are different frames.

Now, let us say a certain periodic task was released at just after the frame started, since a task

can be scheduled only at the beginning of a frame, it cannot be scheduled by the green one, it can

at most be scheduled in the orange, sorry the pink one, so it can start only here and the deadline

is before the frame, so it is not getting a full frame to complete.

So, if the task takes more time, it is a large task it cannot complete here in this frame. So, if the

deadline is somewhere here, then the task gets full frame, otherwise it is only getting a part of the

frame, it may not complete, now it is getting a full frame and since we know that the task

execution time is smaller than the frame size, therefore it will complete if this is the situation.

(Refer Slide Time: 16:02)

But then the question that arises is that given a periodic task and the frame size, how do we know

that what is the minimum duration between the start of the frame and the task, the task arrival

time? Because that is the worst case, if the task arrives somewhere here, then the deadline will be

somewhere here, but if the task arrives here, it will have very less time to meet the deadline.

If the tasks arrives just before the frame starts, then it can be scheduled on the frame and then

that is a happy situation, the deadline can be meet here, but just see here in this situation the

deadline is inside this frame and then it can start only on that frame and then it becomes difficult

to meet the deadline of the task.

So, how do we express this constraint on the frame size that there must be a full frame between

the start of the task and the deadline? One way to say that is if we know that this is the duration,

worst case duration that is the smallest separation between the frame start and the task arrival,

then we can say that 2F + Δ > di, assuming that di is here. So, we will just derive this expression

and that will give us a constraint.

(Refer Slide Time: 18:32)

Now, the minimum separation between the task arrival and the frame that is the worst case

situation is given by GCD(F,pi) very simple derivation, but will request you to go through the

book to see what is the reason why we come with this expression GCD(F,pi).

But when we apply, we do not need those steps, how do we derive this that result is GCD(F,pi),

just need to apply we should know this result, the result is GCD(F,pi) that gives us the minimum

separation between the arrival time of a task and the start of the frame and then we should have

2F – GCD(F,pi) ≤ di, so this the deadline should occur only after the frame.

So, that means the deadline should be larger than 2F – GCD(F,pi). So, this is the important result

for the third constraint slightly more involved than the other two constraints, but we need to

remember this that the constraint that there must be a full frame between the arrival of a task and

its deadline, can be expressed mathematically as 2F – GCD(F,pi) < di and this is the worst case,

separation the minimum separation between the arrival of a task and the frame that must be less

than di or di > 2F – GCD(F,pi).

(Refer Slide Time: 20:55)

So, we can just write those three constants down mathematically, because when we are given a

task scenario, we must know these expressions, so that we can easily compute the suitable frame

size. The first one, the frame size is larger than the execution type of, execution time of all tasks.

The second one is there must be a full frame between the arrival of the task and the deadline, we

expressed that 2f – gcd(pi,f) ≤ Di ∀ tasks.

And the third one we expressed that f must be an integral, sorry the LCM or the hyperperiod or

the major cycle should be an integral multiple of the frame, so that we express as f*(LCM(pi)/f)

= LCM(pi) something like a C division if it is integral then we will get back LCM, if it is a

fraction, then we will not get this back. So, this is the three mathematical expressions that we

will use to determine a suitable frame size.

(Refer Slide Time: 22:28)

Now, let us take the first example. We have two tasks, the computation time is 1 for T1 and

computation time is 2 for T2 and for the first task the period and the relative deadline are the

same 6 and for T2 it is 8. Now, the first thing we need to do is to determine the major cycle and

major cycle finding is straightforward it is just the LCM of the periods of the two tasks, LCM 6

comma 8 is 24, so that is the first thing we need to do is determine the major cycle.

And then we find by the second constraint, what are the feasible frame sizes? 24, 12, 6, 4, 3, 2

and possibly 1, 1 cannot be a frame size, because the frame size must be larger than the

execution time of both the tasks and here the largest is 2 and therefore 2, 3, 4, 6, 12 and 24. So,

these are the feasible frame sizes.

Now, we need to use the third constraint that there must be a integral, there must be a full frame

between the arrival of a task and its deadline. So, let us try that out, first let us see, let us take

frame size 2, so if we take frame size 2, is the, is it giving us a full frame between the arrival of a

task and its deadline, the smaller ones are more likely to give the full frame and the moment it

does not give in some we need not check further, because we will not get a full frame between

the arrival of the task and deadline for the larger ones.

So, first let us look at the smallest one 2. So, 2*F – gcd(f,P1), so 2*2 is 4 and gcd(2,P1) is 2, 2 is

less than 6, therefore for T1, it is okay. Now, let us look for T2, for T2 2*F – gcd(f,P2), this is

2*2 – gcd(f,P2) is less than 8, so again this is satisfied. So, 2 is an acceptable frame size.

(Refer Slide Time: 25:45)

Now, what about 3? So, for 3, if we again compute 2*F is 6 and gcd(6,3) is 3, so 3 is less than

equal to 6 and that is acceptable and similarly, if we test for T2, here the period is 8, so 2*F –

gcd(3,8) = 1, so 6 minus 1 is 5 less than 8, which is the deadline, so even for frame size 3, there

is a full frame for both the tasks, so 3 is also acceptable.

But what about 4? For T1 again if we substitute, it is acceptable, for T2 also it is acceptable, but

even though the constraint is satisfied for 4, but there is another problem here, the problem is that

we have the LCM of 6,8 is 24 and we have the frame size 4, ok so this is gives us 6 frames in a

major cycle, so we will use F=3.

So, here are 6 frames is actually we can, since we have only two tasks, we can schedule them, if

there are more tasks, you would be in problem, so but for two task I would say that enough

frames are available, so I will just remove this, so we can even use F = 4, so we will just revisit

this example in the next lecture and we will take more examples, we will see the 3 constraints

and we will see whether we can set a frame size, which is appropriate for a given problem. We

will discuss examples in the next cycle; next lecture and we will also revisit this example. Thank

you.

