Data Structures and Algorithms using Java
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 08
Topic: Set of JCF
Java C, a collection from the different viewpoints. In the last video lectures we have studied

few such views like a collection is viewed as an array list or it is as a link list or Q or dQ like
this one.

(Refer Slide Time: 0:58)
86 T —

CONCEPTS COVERED

» Constituents of Set in JCF
» Interfaces

» Classes
» Constructors

7 Methods

Now, today there is another view. This view is called the set view of a collection. Set
basically is a very common word. Set, you know, it is basically, is a group, is a collection
again, whatever the name you can say. But the difference from other collection to the set is

that it basically does not allow to include any duplicate elements in it. So, whatever the

elements are there, all the elements are to be unique, no duplicate element should be there.

This means that if a set is basically a set of names, then there should not be two names having
the same. Now, like the collection concept like other structures, the set also defines a number
of interfaces and classes. So, in this class, we will learn about whatever the interfaces are
there in the set collection and the classes. Classes as the class contains constructors as well as
the methods. We shall discuss what are the constructors and methods are there in some
classes those are belongs to the collection called set.

(Refer Slide Time: 02:25)
~N________

=" Collections of JCF

* Set is a very useful concept in mathematics.

* Basically, Set is a type of collection that does not allow o
duplicate elements. That means an element can only exist oo
once in a Set. Sos *

* Unlike other collection type such as array, list, linked list, set
collection has the following distinctive characteristics.

1. Duplicate elements are not allowed. 3

2. Elements are not stored in order. That means you cannot

expect elements sorted in any order when iterating over
elements of a Set.

Now, set is another kind of data structure as | have already told and | have already mentioned
that set can be represented either using indexed manner or in the sequential manner. But in

addition to this, Java supports to maintain the set either using index means look like an array

or is a sequential, look like a list. Also, it can allow you to include in a very peculiar manner,

it is unique or novel manner actually.

They are called tree form. Concept of tree is very important for, from the data structure point
of view. So, tree concept will be discussed in this class later on but tree is a very concept. So,

the set also can be represented using this concept ‘tree’.

(Refer Slide Time: 3:22)
D i S |

=" Collections of JCF

+ Following are the interfaces and classes for managing set objects in Java

* Interfaces:
Set, SortedSet, NavigableSet

* Classes:
EnumSet, HashSet, LinkedHashSet, TreeSet

Now, so far the interfaces are concerned in set collection, there are three different interfaces
namely, set, sorted set and navigable set. There are few classes which basically implements
all these sets interface namely, EnumSet, HashSet, LinkedHashSet and TreeSet. So, we will

try to have a quick view of all the sets those are there.

(Refer Slide Time: 03:56)

<= Java collection hierarchy

I extends
t

| implements

interface

class

Now, again you see, we have discussed in the last video these parts, whatever the interface
and (())(4:04) up to this one. The next part that we are going to discuss in this class is
basically these are the things are there. So, these are the interface sets, sorted set and
navigable set. And the classes those are there is EnumSet, HashSet, LinkedHashSet and

TreeSet out of which HashSet is basically abstract class.

These are the basically useful class for which you can create an object and then for that object

you can invoke all the methods which are defined in those classes.

(Refer Slide Time: 04:47)

Interfaces for Set

<" Interfaces of collections

Set Extends Collection to handle sets, which must contain unique elements.
SortedSet | Extends Set to handle sorted sets.

NavigableSet | NavigableSet extends SortedSet to handle retrieval of elements based on
closest-match

Table 8.1: Interfaces for Set

Now, let us see what are the interfaces are there in each of the interfaces that we have

mentioned namely, set, sorted set and navigable sets.

(Refer Slide Time: 04:55)

<= |nterface Set

* The Set interface defines a set. It extends Collection and specifies the behavior of a collection
that does not allow duplicate elements.

* Therefore, the add() method returns false if an attempt is made to add duplicate elements to a
set. i

+ Set is a generic interface that has this declaration:
interface Set<T>
e e

Here, T specifies the type of objects that the set will hold.

* |t does not specify any additional methods of its own.

Now, again like other collections that we have studied so far, set is also a generic form. That
means it allow to include elements of any type. That is why a set is basically interface. On
generic type it is there. So, only one type of collection it can store. So, only one template is
specified here and the interface sets has the, say in add methods which is basically same as
the add method that is there in collection because set is also, is an extension or is a child class

of the collection.

And another thing is that in the interface sets there is no any additional methods of its own
other than all those methods by virtue of inheritance those are inherited from the collection.
So, those all the methods those are there in the collection you can call for the set collection

actually. So, that is why and there is no specific method defined in the set as an interface.

(Refer Slide Time: 06:07)

Interfaces of collections

Interface Description

SortedSet | Extends Set to handle sorted sets.
NavigableSet | NavigableSet extends SortedSet to handle retrieval of elements based on
closest-match

+ The SortedSet interface extends Set and declares the behavior of a set sorted in ascending order.

+ SortedSet is a generic interface that has this declaration:

interface SortedSet<T>

Here, T specifies the type of objects that the set will hold.

* In addition to those methods provided by Set, the SortedsSet interface declares the methods,
summarized in Table 7.6.

Now, let us see the interface sorted set. Set is a collection where all the elements are not
necessary that to be arranged in an order. On the other hand, if it is a sorted set then the
elements are to be arranged in an order. So, that is why sorted set. So, a set and sorted set,
they are basically same. Only difference is that in the later one the elements are sorted in an

order. Usually, the sorted set is more meaningful for the data like integer, float or string.

But for other user defined data type like book or student they are not meaningful unless you
define to be a meaningful from the sorted point of view. Now, like other collection sorted set
is also a generic collection. That means it can include any type actually but they are basically
limited to numeric if you have by default. But you can customize them writing some methods

of your own to make it applicable to other defined data type.

(Refer Slide Time: 07:39)

<=_ Methods declared in SortedSet

[Method Description

Ecmparawrd super E> comparator{)/| Returns the invoking sorted set’s comparator. If the
natural ordering is used for this set, null is returned.

Efirst() Returns the first element in the invoking sorted set.

SortedSet<E> headSet(E end) Returns a SortedSet containing those elementsess than

= end that are contained in the invoking sorted set.

Elements in the returned sorted set are also referenced

| by the invoking sorted set.

| Elast() Returns the last element in the invoking sorted set

[Sortedset<e> supsen(kar) erg) Tncludes those elements between

3
start and end-1. Elements in the returned collection are
also referenced by the invoking object.

SortedSet<E> tailSet(E start) Returns a SortedSet that contains those elements greater
— - than or equal to start that are contained in the sorted

| set. Elements in the returned set are also referenced by

the invoking object.

Table 8.2: The methods declared in interface

Now, let us see what are the methods are there in the sorted set. It is basically similar to the
others. Now, here is a comparator method, comparator on method because if you want to
make say student as objects to be stored in a sorted set, so you can define or you can modify
the comparator method. Comparator method is defined in the collection interface actually.

But we can modify comparator method to be applied to the sorted set also.

That is why this comparator. Comparator is basically that how you can compare one object to
another from the sorted point of view. Now, head set is basically written the elements which
contained in this current elements starting from the end element. So, this is the one method.
The last is basically returns what is the last element that is stored in this collection. Subset as

the name implies it basically returns the subset of the elements.

The subset is basically has a range that from the element which having the starting at start
and ending at this one. So, it basically returns all the elements between start and end both
inclusive. And it is basically tail set just like subset only but tail set means a particular portion
of the set starting from a particular elements in the set. So, these are the methods are there to

access or to manipulate your collection in the different way. So, this is about sorted set.

(Refer Slide Time: 09:26)

<= |nterfaces of collections

NavigableSet | NavigableSet extends SortedSet to handle retrieval of elements based on
closest-match

<= Interface NavigableSet

+ The NavigableSet interface extends SortedSet and declares the behavior of a collection
that supports the retrieval of elements based on the closest match to a given value or values.
* NavigableSet is a generic interface that has this declaration:
interface NavigableSet<T>

Here, T specifies the type of objects that the set will hold.

* In addition to the methods that it inherits from SortedSet, NavigableSet addsthose
are summarized in Table 8.3.

®
Navigable set is ina another advancement of the sorted set but it is not necessary to be
sorted there. But navigable is from the searching point of view for the faster searching to a
collection if you want to have, then you can think for storing this as a navigable set. Now,
navigable set includes any type of data like other collection and it has many methods defined
init.

(Refer Slide Time: 09:56)

N T

<=_ Methods declared in SortedSet

Method ipti
E geiling(€ oby) Searches the set for the smallest element e such that e >= obj. If
such an element is found, it is returned. Otherwise, null is
returned
Iterator<E> descendingiterator) Returns an iterator that moves from the greatest to least. In other
words, it returns a reverse iterator.
ingSet() Returns a Navij that is the reverse of the invoking set. The
resulting set is backed by the invoking set.
E floar(E obj) Searches the set for the largest element e such that e <= obj. If such
an element is found, it is returned. OtHerwise, null is returned.
NavigableSet<E> Returns a NavigableSet that includes all elements from the invoking
headSet(E upperBound, boolean set that are less than upperBound. If inclis true, then an element
incl) equal to upperBound is included. The resulting set is backed by the
invoking set.
€ higher(E oby) Searches the set for the largest element e such that e > obj. If such
- an element is found, it is returned. Otherwise, null is returned
3 Iowev(Eb_bD Searches the set for the largest element e such that e < obj. If such an
_— element is found, it is returned. Otherwise, null is returned.

Table 8.3: The methods declared in N t interface (continued)

<=_ Methods declared in SortedSet

Method

EpollFirst() Returns the first element, removing the element in the process.
Because the set is sorted, this is the element with the least value.
nullis returned if the set is empty.

EpollLast() Returns the last element, removing the element in the process.

Because the set is sorted, this is the element with the greatest
value. null is returned if the set is empty.
NavigableSet<€> Rets i includesall the
subSet(E invoking set that are greater than lowerBound and less
than upperBound. If lowincl is true, then an element equal to
lowerBound,
boolean lowlnc],
E upperBound,
boolean highinci)
NavigableSet<E> Returns a NavigableSet that includes all elements from the
tailSet(€ lowerBound, boolean incl) invoking set that are greater than lowerBound. If incl is true, then
an element equal to lowerBound is included. The resulting set is
backed by the invoking set.

t interface

lowerBound is included. If highincl is true, then an element equal to
upperBound is included. The resulting set is backed by the invoking
set

Table 8.4: The methods declared in N

Few methods just for discussion like a ceiling. Ceiling is basically is the method, is basically
starting from a certain elements it will basically return all the elements. Ceiling means from a
particular portion of, particular point of the element it will give all the rest of the element
like.

And descending iterator is basically traversal of the collection in a descending order. And
then floor is basically like ceiling there is another, starting from a certain it is basically

ceiling if it is top to bottom, then it is from bottom to top traversal actually or returning like.

And then higher is also similar to ceiling and floor. It basically return some elements which is
larger than a current element which is passed as an input. Lower is also similar to floor is
basically which element has the largest element which is less than the object actually it is
there, passed as an argument. So, this way from the collection which is stored as a sorted set
we can access the different elements from there. There are few more methods that we have

discussed here.

(Refer Slide Time: 11:30)

Class EnumSet

Class EnumSet

+ EnumSet extends AbstractSet and implements Set. It is specifically for use with elements of
an enum type.

* Itis a generic class that has this declaration:
class EnumSet<E extends Enum<E>>

Here, E specifies the elements. Notice that E must extend Enum<E>, which enforces the
requirement that the elements must be of the specified enum type.

* EnumSet defines no constructors. Instead, it uses the factory methods shown in Table 8.5 to
create objects.

* The copyOf{) and range() methods can also throw IllegalArgumentException. Notice that the
of() method is overloaded a number of times. This is in the interest of efficiency. Passing a

known number of arguments can be faster than using a vararg parameter when the number
of arguments is small.

Now, there is another class which belongs to the set category, it is called the EnumSet. Enum
Set concept is basically it is a collection of some enumerated data type. Enumerated data type
means some data types which does not belongs to any type of data but it is called enumerated.
For example, seven days of a week can be enumerated as Sunday, 0; Monday, 1, to Saturday,
7, so it is called enumerated. Similarly, say 12 different months or eight different colors, all

these can be enumerated form or size of a T-Shirt can be enumerated form.

Different concept it is there. So, if you do not know enumerated type of data or it is very
popular in C and C plus called Enum type, so Enum data type. That means it basically define
a certain data type, it is called the enumerated. So, Java collection also facilitates how this
kind of enumerated type elements also can be managed. For these things there is a class

called EnumSet.

EnumSet class does not have any constructor of its own but only few static methods to create
enumerated set. And there are few methods, those are very popular to copy some elements
from this enumerated set namely, copyOf, or range method like this one. All this enumerated
set and then their application will be discussed when we will discuss about application of this

Java collection framework to a real life data structure.

(Refer Slide Time: 13:29)
N eam e

<" Methods declared in EnumSet

Method

static <€ extends Enume<E>> an EnumSet that contains the elements in the enumeration

EnumSet<E> allOf(Clas<E> t)
!

n EnumsSet that is comprised of those elements n
complementOf{EnumSet<E> e)

ds Enum<E>> Creates an EnumSet from the elements stored in ¢ +
<E> copyOf(EnumSet<E>
e

static <€ extends Enum<E>> Creates an EnumSet from the elements stored in ¢
EnumSet<E> copyOf(Collection<E>

<)
static
Enum

static <€ ¢;

Table 8.5: The methods declared in continued)

And it has certain factor E method it is called, those methods by which you can create
enumerated type of data and here is basically is that this is all of, that means is a method by
which a set can be created. | say, I told that it does not have any constructor. So, there is no
constructor but if you want to create a set collection, then allOf method it basically pass

different objects and then it can add it into this and then this way the enumerated set can be.

Like allOf it is compliment Of, that means it is basically if a is a set, then a compliment. That
means those are not there in a but they are in some other universal set it is like. And copyOf
is basically copy a particular collection into another EnumSet like. This is another way,
copyOf from the existing collection which is passed there. noneOf means it basically give the

collection into this collection which is not there rather than this one.

It is just like complement for some. And it is also, there is another called Of method which
basically is a, used as a variable things, means it says basically from a certain enumerated set
v 1, v 2, v 3, within a certain range it can have copy of it. So, these are the different methods

by which you can create, you can maintain the Enum, enumerated type of sets.

(Refer Slide Time: 15:13)

_;

=" Methods declared in EnumSet

Method Description

static <E exteny m<E>> Creates an EnumSet that contains v.

EnumSet<E> pf(E:

static <E extends EnumgE>> Creates an EnumSet that contains v1 and v2
EnumSet<Eb of(E v1, E 42)

static <E ektends EnumgE>> Creates an EnumSet that contains v1 through v3.

EnumSetd€> of(E v1, EN2, Ev3)

static <E dxtends Enumi<E>> Creates an EnumSet that contains v1 through vd.
EnumSetqE> of(€ v1, f v2, Ev3, E vd)

static <E extends Enfim<E>> Creates an EnumSet that contains v1 through v5.
EnumSet<Eb of(E y1, Ev2, Ev3,Ev4,

EV5)
static <E extends Enum<E>> Creates an EnumSet that contains the elements in the range
EnumSet<E> range(E Md] specified by start and end.

Table 8.5: The methods declared in

It has few methods they are also declared. Those methods in addition to the method that we
have discussed, for example, of E v, so if particular element v is there, it basically check that
element v is there or not. Now, v 1, v 2 for the two EnumSet elements is there. v 1, v 2, v 3, it
check that whether v 1, v 2, v 3 are there or not. So, it is, there is a different version of Of
method as we see whether a particular Enum elements is there, two element, three element,

four element and maximum five elements it allows.

It also have one method called the range method. It basically check or it basically that creates
EnumsSet which contains all the elements in the range specified by start to end. So, it is
basically creating another set, EnumSet using this method. So, these are the few methods that
those are, okay, they are in order to maintain the Enum Sets. But learning of all those
methods will be more clearer whenever we can include some examples. Definitely, all the

examples will be covered while discussing details about this EnumSet class.

(Refer Slide Time: 16:27)

Class HashSet

Class HashSet

+ HashSet extends AbstractSet and implements the Set interface. It creates a collection
that uses a hash table for storage.

* HashSet is a generic class that has this declaration:
class HashSet<E>

Here, E specifies the type of objects that the set will hold.

* Ahash table stores information by using a mechanism called hashing. In hashing, the
informational content of a key is used to determine a unique value, called its hash code.
The hash code is then used as the index at which the data associated with the key is
stored. The transformation of the key into its hash code is performed automatically—
you never see the hash code itself. Also, your code can't directly index the hash table.
The advantage of hashing is that it allows the execution time of add(), contains(),

remove(), and size() to remain constant even for large sets.

Now, we discuss about another very interesting collection, it is called the HashSet. Now,
concept of hash is a very important one concept and it is useful in many application and
particularly called the hashing application. Hashing is the concept which basically have been
introduced to retrieve an element from a collection in a most fastest way. So, for faster

retrieval of an element. Now, how it is possible that concept is followed hash.

Hash is basically for every element it creates one hash code. Now, hash code is something by
which a particular element can be proved in a collection whether it is present there or not. So,
whenever you want to search for an element you just create its hash code and then list the
table of all the hash values and then you can check whether element present there and where
it is present. So, this is the concept, now regarding the hash code concept we will discuss

these things in details when we will study the table data structure or map data structure again.

Now, whatever the thing it is there for an element to be accessed, so there is a hash value to
be considered. Now, hash value can be created by a method hash code which is basically, is a
unique for every unique element actually. It is not true that for two different element the same
hash value. It is never. So, this is the way for every element a hash value be created. For
example, if your name is Saurabh and if you want to apply the hash code to this, for Saurabh

it will return a unique value, hash value.

So, this concept that is called the hashing concept and if you store a collection in addition to
the utilization of the concept hash, then that collection is called the hash collection. Now, it is

more precisely called hash set collection.

(Refer Slide Time: 18:50)
D S T Dy

<=_ Methods declared in HashSet

Constructor Description
Hashet() Itis 2 default constructor to create a hash set.

HashSet{Colisgtion<? It intializes the hash set by using the elements of ¢

extends E>¢)

HashSet{int cagagity) k/ Itinttializes the capacity of the hash sat to capacity. +

HashSet{int cagacity, It instializes both the capacity and the fill ratio (also called load capacity) of
float fillRatio} the hash set from its arguments. The fill ratio must be between 0.0 and 1.0,
and it determines how full the hash set can be before it is resized upward.

Table 8.6: The methods declared in

Now, hash set collection if you want to create, so for creating hash set collection there are
few methods, constructors are there like hash set constructor it is basically is a default
constructor. Hash set for a certain collection, for a set of numbers if you want to store them as
a hash set, then this constructor can be created. And you can create a hash set giving an
integer value as a capacity. Suppose we want to create a hash set collection with 100 size or

capacity, then this constructor can be there.

Another way of creating a hash set mentioning the size as well as the fill ratio. What is the
concept? Is that if you have decided that one hash set you initially create with size 20, later
on you keep on adding, adding. Then what will happen after 20 is over? So, it basically
dynamically grow the hash set collection actually. That means automatically it will increase

the size, you do not have to tell.

So, if you initially fix their size 20 but later on if you want to store 30, no issue for there.
Now, whenever you are inserting or adding elements into the hash set, it needs to be grow
automatically. Now, that grow you can control by mentioning fill ratio. That means how
much. So, if you say that 75 percent whenever the element is filled according to your
mentioned capacity, then only it will be increased by another jump, maybe another size 10 or

20. Those things also you can mention.

So, this way you can mention the fill ratio it is there. So, fill ratio value can be anything
above 0 to less than 1.0. So, in between 0 and 1.0 actually the fill ratio. As I said, fill ratio
0.75 means that 75 percent when it is full, then you increase the capacity of this hash set. So,

this concept it is followed to automatically grow the hash set collection for your storage.

(Refer Slide Time: 21:02)

Class LinkedHashSet

Class LinkedHashSet

+ A LinkedHashSet is an ordered version of HashSet that maintains a doubly-linked
list across all elements. When the iteration order is needed to be maintained
this class is used. When iterating through a HashSet the order is unpredictable,
while a LinkedHashSet lets us iterate through the elements in the order in which
they.were inserted. When cycling through LinkedHashSet using an iterator, the
elements yy_ll be returned in the order in which they were inserted.

* The LinkedﬁashS{t class extends HashSet and adds no members of its own. It is
a generic class that has this declaration:

class LinkedHashSet<E>
Here, E specifies the type of objects that the set will hold.

+ The constructors in the LinkedHashSet are shown in Table 8.7.

Now, linked hash set, it is the one way by which the sequential representation of the hash set
actually. So, that means it is stored in a sequential just like a linked list form. Now, so, how
linked list hash set is basically one form of hash sets and it is basically extends, extend the
hash set. Hash set is one class that we have discussed. This is another form and this linked

hash set does not have any member of its own.

Whatever the methods those are there in hash sets are basically method of linked hash set
basically. Like hash sets linked hash set also store generic type of data. That means the
template is there. That means it can store any type of objects that you want to store. Now, in
addition to the methods those are there in the linked hash set, that means the same method of

hash set it also include some constructors of its own.

(Refer Slide Time: 21:22)
e L B SN ey

<= (lass LinkedHashSet

* AlinkedHashSet is an ordered version of HashSet that maintains a doubly-linked
list across all elements. When the iteration order is needed to be maintained
this class is used. When iterating through a HashSet the order is unpredictable,
while a LinkedHashSet lets us iterate through the elements in the order in which
they were inserted. When cycling through LinkedHashSet using an iterator, the
elements will be returned in the order in which they were inserted.

* The LinkedHashSet class extends HashSet’and adds no members of its own. It is

o

a generic class that has this declaration:

class LinkedHashSe@

Here, E specifies the type of objects that the set will hold.

* The constructors in the LinkedHashSet are shown in Table 8.7.

Constructors of LinkedHashSet

Constructor Description

LinkedHashSet() It is a default constructor to create a hash set

LinkedHashSet(Collection< It initializes the hash set by using the elements of c.

?extends > ¢)

LinkedHashSet(int It initializes the capacity of the hash set to capacity.

ca_pa_cnv]

LinkedHashSet(int Itinitializes both the capacity and the fill ratio (also called

capacity, float fillRatio) load capacity) of the linked hash set from its arguments. The
et

fill ratio must be between 0.0 and 1.0, and it determines how

% full the linked hash set can be before it is resized upward.

Table 8.7: The constructors declared in Linked!

Now, the constructors which are there in the linked hash sets are tabulated here, listed in this
table. Linked hash, this is the default constructors and this basically is same as hash set
constructors. Basically if we want to create a linked hash sets with input as a collection
existing and then this is basically same as the hash set, it is basically giving a capacity as the
initial size and then it is also telling that automatically if linked hash set to be grow, so what

should be the fill ratio that it can grow?

So, these are the different methods, different constructors are there and as | already
mentioned, all the methods which are there in the hash sets are also there in the linked hash

sets.

(Refer Slide Time: 23:15)
~]

<= (Constructors and methods of LinkedHashSet

o The constructors in the LinkedHashSet class are in the similar form that of the
constructor in Hashset class.
The LinkedHashSet class extends HashSet class and implements Set interface.

* The LinkedHashSet class does not define any exclusive methods of its own. All
methods are same as the methods as in HashSet class. This implies that whatever the
operations we can perform with HashSet collections are also possible with the
LinkedHashSet class. Hence, the manipulation of LinkedHashSet collections are not
illustrated explicitly.

Now, so constructors and, hash set and linked set more, is very similar to each other actually.
Only the thing is that internally they are maintained in a different way where that issues are

need not to be bothered by the programmer.

(Refer Slide Time: 23:34)

Class TreeSet

Class TreeSet

+ TreeSet extends AbstractSet and implements the NavigableSet interface, which in turns
successively extends SortedSet and Set interfaces.

. T]his implies all the methods defined in NavigableSet are implemented by the SortedSet
class.

* It may be noted that this class like LinkedHashSet class does not have its own method
efined.

* The TreeSet It creates a collection that uses a tree for storage and hence its name.
* Further, in this type of set, elements are stored in ascending order of sorting.

* Access and retrieval times are quite fast, which makes TreeSet an excellent choice
when storing large amounts of sorted information that must be found quickly.

Now, there is another collection. This is called the tree set. It is a class, that means all the
methods in this class are already defined and tree set is basically extension of set interface. It
basically implements interface sets. But here it basically stored in the form of a tree. So, tree
set extends one abstract called Abstract Set and implements the navigable set that we have
discussed earlier. And it basically is a different internal representation of the collection in the

form a tree structure.

The tree structure concept is a different than the array structure or linked structure actually.
Now, the alike set a tree usually allowed to insert or delete an element keeping a sorting order
actually. And further, tree set is another data structure which allow a programmer to access
the elements from the collection in a fastest manner like other hash set like. So, this is the one

collection is there in the tree set.

(Refer Slide Time: 24:55)
ST - il

<=_ Constructors of TreeSet

Constructor Description

TreeSet() Itis a default constructor to create an empty set that will be
- sorted in ascending order according to the natural order of its
elements.

TrgeSet(Collection<? It builds a tree set that contains the elements of ¢, where c is
extends Ey) any collection.

TreeSet(Comparator<? It creates an empty tree set that will be sorted according to the
super E> comp) comparator specified by comp.

TreeSex) It builds a tree set that contains the elements of ss.

Table 8.7: The constructors declared in TreeSet

And the constructor those are there if you want to create a collection following the tree set
form, these are the constructor. This is the default constructor and this is the constructor tree
set, means if you want to create a tree set collection using an existing collection of any type,
and then this is a tree set because it is needs to be stored in a sorted fashion. So, one
comparator method needs to be defined and to be mentioned as an input that which

comparator by which you want to store the element in the tree set collection.

And tree set also can be used with the existing sorted set. Sorted set is another concept where
the ordering is mentioned. So, tree set is the one way that the sorted set can be given as an
input to create a tree set collection. So, these are the different methods. Constructors those are

there in the tree set and few classes.

(Refer Slide Time: 25:58)
N~

<=_ Java data structures with collection

* You will learn how the different data structures that you can implement in your
programs using the utility available in java.uti package.

* Overall, all the data structures can be broadly classified into four categories.
The broad data structures classification is shown in Table 8.8.

ures List Queue Set [Map
Indexed ArrayList ArrayDeque HashSet I HashMap
Sequential] LinkedList PriorityQueue / TreeSet / TreeMap
Madexed with Iinks/ Li LinkedHashl
Bit string” I EnumSet / EnuMap

Table 8.8: Java Supports to data structures

This, okay, so these are the different methods, different interfaces and collection so far the set
collection is concerned. Now, in summary what we can say that a set can be maintained using
either hash set or linked hash set or tree set. And they also, there also a possibility of
maintaining a collection in the form of a set but it is a enumerated type of elements. So, these

are the concept that it is there.

Now, out of which hash set is basically is a indexed based strategy. Tree set is a sequential
strategy, linked hash sets is indexed with link strategy. And the enumerated set is basically
the data structure that it consider is called the bit string. Now, all these data structure,
indexed, sequential, or indexed with links and everything that will be discussed while we will

discuss the specific concept of data structure, their theory.

So, their theory is an important aspects. Now, here we have discussed about the different
collection, how they can be maintained and whatever the operations or functions in order to
maintain them, that means functionalities. Functionality regarding how a collection can be
created, how an element can be added, how an element can be removed, how status can be

checked, how a collection can be traversed.

That mean all the elements can be visited one by one and so many things are there. So, these
are the essential operations but behind these operation it will be very nice if we have good
understanding about theory or practical or actual logic of implementing this application. So,
once you know then it will be really give and adds to a very skilled programmer actually. So,
that is why we should study little bit theory and then the application of those theory, that

means detailed coding concept.

And using coding the conventional code programming as well as coding using or taking the
advantage of all the Java collection framework those are declared there in Java dot uti

package.

(Refer Slide Time: 28:40)

7 https://cse.iitkgp.ac.in/~dsamanta/javads/index.html

7 https://docs.oracle.com/javase/tutorial/

Now, regarding the today’s discussion you can have the study materials either it from the
Oracle tutorial websites or from the webpage that | have mentioned for you in the first link
that is given here. So, | advise you to check the link, get the materials there, study according
to your own space and learn more. If you have any further questions or you need some

clarification based on any discussion, you can post those question in the discussion forum.

And one more important thing that | want to mention, week-wise assignments those are
particularly related to every week’s discussion you try to get the answer of your own and then
verify your answer that you are confident about answer because attempting or answering all

those questions really gives more understanding. Okay, fine. Thank you very much.

