Data Structure and Algorithms using JAVA
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 7 - Collection in JCF

(Refer Slide Time: 00:31)

NPTEL ONLINE CERTIFICATION COURSES

Data Structures and Algorithms Using Java

Debasis Samanta
Department of Computer Science & Engineering, IIT Kharagpur

Module 03: Java Collection Framework
Lecture 07 : Collection in JCF

We are discussing Java collection framework. A brief introduction to the Java collection
framework we have already learned in the last video. You have okay, you can recall that there
are so many what is called the facilities for the management of different type of data
structure. Today, we will take a quick tour to the whole stock of collection framework as it is

vast. So we should discuss this topic in three more video lectures.

(Refer Slide Time: 01:19)

20 =

CONCEPTS COVERED

» Constituents of Collection of JCF
7 Interfaces R

» Classes
» Constructors

7 Methods

So today, we will start some part. Today, actually, we will discuss about the basic
composition of Java collection framework, composition means it includes a large set of
interfaces and classes. Today, we will discuss few important interfaces and other interfaces
will be discussed in the next video lectures. Other than these interfaces there are certain

classes also, those are the main things in the collection framework.

In order to know the classes, basically we are to be familiarized with the constructors and
methods in each classes. Now the understanding of all those concept that means what are the

different interfaces and classes are very much important for any programmer.

So we have to invest our time to understand these things and as you will see there is no
programming at the moment while I discuss these collection framework rather constituents of
the collection framework. Programming and everything will be discussed when we will

discuss the different data structures in due time.

(Refer Slide Time: 02:44)

«=_ Collections of JCF

Okay, so first let us discuss about the basic composition of collection framework. Now
collection actually as we, we are terming the concept collection, actually collection means it
is basically is a group of data. Now, so group of data how it can be stored depending on that
the different structures are known. For an example, array, so array stores a set of data and in a

specific it follows certain principle, so that is why array.

However the same principle is not followed in another collection that is called the link list. So
every data structure whether it is array or link list or it is a stack or a queue or in our
conventional concept it is set, they have their own policies to store and also their own policy

to perform certain operation on the elements those are belong to the collection.

(Refer Slide Time: 04:08)

«=_ (Collections of JCF

-
* A collection that provides an architecture to store and manipulate the group of objects.

* Java collections can achieve all the operations that you perform on a data such 8'
searching, sorting, insertion, manipulation, and deletion.

* The hierarchy of the classes and interfaces in JCF is quite complex.

* The entire Java Collections Framework (ICF) is built upon a set of standard interfaces,
classes and algorithms.

* Interfaces:
Set, List, Queue, Deque

+ Classes:
ArrayList, Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet, TreeSet

So interface and classes those are going to discussed in this lecture, basically provides the
facilities that how a particular type of collection can be maintained, can be managed. Now
overall, the collection is as we told you that collection is a very vast thing, this is vast because

it covers so many data structures in one bundle.

To understand the different facilities so Java provides the concept of interface. As you know
interface is basically is a template for certain basically implementation. So interface contains
declaration of many fields or methods but body of the methods are not there. So interface
gives simple highlights about what are the methods, what these methods return, if you want

to call this method what should be the argument and so many things.

In fact, whatever be the interfaces are there they needs to be implemented. Implemented
means all the methods those are declared there they are to be defined. In Java collection
framework all classes basically implements all the interfaces those are there. Now all these

classes basically plan to cater to need of a particular data structure, okay.

So actually, all the interfaces again can be categorized to give certain declaration of different
functionalities or methods for different data structure like set, list, queue, de-queue, array or
lot of varieties. Similarly, the classes which basically implements all those interfaces are

there to give the full what is called the life or safe to the facilities.

So they are basically cater to the need of arrays namely, array list class, vectors, link list,

priority queue, link hash sets, tree-set and so many things are there.

(Refer Slide Time: 06:43)

== Java collection hierarchy
—]

] extends
! implements
interface

class

Now overall story really is very complicated and there are certain class hierarchy, the
taxonomy of the classes which basically Java collection framework follows. Now as we see
this figure, in this figure, we see lot of interfaces which are represented by this kind of
relationship among them. Collection is basically is a super-interface basically, so here
actually we see collection inherits, list inherits collection, queue inherits list as well as

collection, de-queue is basically inherited from the queue interface, like this one.

So interfaces are there follow the same concept as class except that interface contains method
without body in them. Now although the interfaces are implemented with separate classes
some classes are abstract classes, they are like interfaces but they are abstract. On the other

hand, there are certain classes basically implements all this interface.

For example, here link list is a class which implements queue is a interface and so on. So here
basically which are the interfaces and which are the different classes is shown in one view
actually.

(Refer Slide Time: 08:10)

~=_ Java collection hierarchy

] extends
t

| implements

interface

Now in this lecture, we will discuss all these things and in the next lecture, the next part of

the things will be discussed. Now these are the basically called a collection framework.

Collection framework consist of this kind of thing and these things are there. So today now

let us discuss about first the collection framework which includes the few interfaces in it.

(Refer Slide Time: 08:49)

Interfaces Collection

''''''

= Interfaces of collections

Intetace

"\
Hﬁmbn Enybles you to work with groups of objects, it is at the top of the
coliections hierarchy.

List List pxtends Collection to handle sequences (lsts of objects)

Queve Quepe extends Collection to handle special types of lists in which elements
are femoved only from the head.

Deque Degue extends Queus to handle a double-ended queue

Sot hﬁmﬁ Collection to handie sets, which must contain unique elements.
SortedSet | Eftends Set to handle sorted sets

NavigableSet |KiavigableSet extends SortedSet to handie retrieval of elements based on
closest-match

Table 7.1: Interfaces in collections framework

Now let us see what are the interfaces are there in the collection. This table shows altogether
all interfaces those are there in Java collection framework. As you see in the list these are the
basically interfaces, list, queue, de-queue, sets, sorted set, navigable set and then collection is
basically the super, super interface we can say.

Now what these collections are? Again, | repeat all these collections declares certain
methods, these methods are basically the functionalities that can be applied to many structure

data, data structure that is the concept.

For example, list interface is basically includes all the methods that you can have while you
write your program to maintain list data structure, like say link list sort of thing. Similarly,
queue, de-queue etcetera. So these are the interface, now | will just okay, quickly summarize
different methods those are there because understanding of all those methods really matters

for the programmers.

(Refer Slide Time: 10:09)

«=_ (Collection interface

* The Collection interface is the foundation upon which the collections framework is built because
it must be implemented by any class that defines a collection.

* Collection is a generic interface that has this declaration;

Here, T specifies the type of objects that the collection will hold.

So it may be a bit boring to know but if you little bit hold your patience and go through these
things, it really give lot of things to your learning process. So | should advise you to take a
patience, hold your patience and then check whatever the methods are there although in the
this video of a short duration I will try to quickly give you because we have to cover so many

things are there.

Now let us first consider the collection interface. Collection is the main or super we can say,
it is the top of all interfaces, is basically represents a collection of any type. So that is why
this collection is basically is a generic like, so T is basically any type. Any type means if you
want to store in your collection integer type of data, so this T will be integer or double or

string.

If you want to store the collection of records of type student then T can be student or book or
person like this, so this basically this one. So this is the idea about the interface that is a
collection and let us see what are the methods are there in this collection interface.

(Refer Slide Time: 11:40)
>

<=_ Methods declared in Collection

* Collection declares the core methods that all collections will have.

* Because all collections implement Collection, familiarity with its methods is necessary for a clear
understanding of the framework.

* These methods are summarized in Table 7.2,

Method p
| bo’ﬂnngl\ ob)) Adds obj to the invoking collection. Returns true if obj was
added to the collection, Returns false if oby is already a
member of the collection and the collection does not allow
duplicates.
boolean AWCON«!M(’ extends T>¢) Adds all the elements of ¢ to the invoking collection.
— Returns true if the collection changed (1., the elements
were added). Otherwise, returns false.
void clear() Removes all elements from the invoking collection
| bgo_luﬂ contains(Object ob)) Returns true if oby is an element of the invoking collection.
L Otherwise, returnsfalse.
boolean (orv_vu_u‘uAII((oIImm} »¢) Returns true if the invoking collection contains all
elements of . Otherwise, returns false

Table 7.2: The methodls declared in Collection interface (continved

There are many methods in fact and again, one thing you should note that interface does not
have any constructors, only the methods. Because interface cannot be used to create any

object, that is why no constructor is there in the interface.

Anyway, methods are there, now what are the methods? Many methods, I just highlights few
methods and all the methods are have their brief description in the right side of the column.
So if you want to know details about any methods, you should study the description, read the
description those are provided and we will discuss all these methods and utilization with
example programs and everything but not now in this video, in this lecture class. It will be

discussed later on.

Now here we can see the first method. I will try to give a very, only few methods discussed in
details but not all methods because it will really take enough time because lot of interfaces

are to be covered. Now here the method, one method is called add method.

What is the meaning of this method? This method is, meanings that it has an argument of a
template type, any type of objects. So if you want to add an integer to a collection integers
then you can use it. So add method as the name implies it basically to add one element into a

collection. Similarly, add all and we can see the argument is a collection, so if we pass a

collection to this method then all the elements which are there in this collection will be added
to the existing collection.

If the addition is not possible then it will return false, if addition is successful it will return
true, so that is why return concept is there. Now again let us see clear, as the method implies
if we call the clear method for a collection let us say collection is x and if we call this method
clear x dot clear, what will happen?

All the elements which are there in the collection x will be removed forever. So clear is one
method. Now contains and argument is an object that means it will search, if a particular
element obj is there in the existing collection or not. If it is present it will return true, if it is
not present it returns false. ContainsAll, like contains only such but a collection, that means
you give the input that a set of elements it will search the collection if those elements are
there in the existing collection or not.

If it is there return true, if it is not there return false and here the collection that you passed
and the collection it is there, not necessary the same sequence or same order. In any order, it
will search one by one and then check if all presents there or not. So these are the methods
are simply in a understandable form. So if you read the method and then description of each

method, you will be able to understand what this method is doing.

(Refer Slide Time: 15:04)
~

«=_ Methods declared in Collection

P

boolean qqn‘@k(()b@l Returns true if the invoking collection and obj are equal. Otherwise,
returns false.

int hashCoda() Returns the hash code for the invoking collection

boolean isémpty() Returns true if the invoking collection is empty. Otherwise, returns false.

Iterator<T> iteratoy Returns an iterator for the invoking collection

default Stream<E> parallelStream() | Returns a stream that uses the invoking collection as its source for
e elements. If possible, the stream supports paraliel operations.

boolean r’m_wv_oj()bm’ub,l Removes one instance of obj from the invoking collection, Returns true (f
the element was removed. Otherwise, returns false,

boolean removeAll(Collections?a ¢) | Removes all elements of ¢ from the invoking collection. Returns true if
the collection changed (i.e., elements were removed). Otherwise, returns
false

default boolean ramoxe!f{ Predicate | Removes from the invoking collection those elements that satisty the

< Supﬂ‘]_)_p) condition specified by predicate.

boolean MM{@? {) Removes all elements from the invoking collection except those in ¢

Returns true if the collection changed (1.¢., slements were removed)
Otherwise, returns false

Table 7.2: The methods declared ir

There are few more methods in this collection which | have mentioned here in this list. The
equals method, equals method is basically check whether the existing collection and then the

argument that we have passed or equals means if any object is present in this collection it is

basically there. Hash code, this concept we will discuss in details later on, basically it gives a
code for a particular set or a particular element.

ISEmpty as the name implies is basically check whether collection presently contains any
elements or it is empty. Iterator is the one method which we shall we use in details when we
will discuss with programing examples that how to traverse a collection one by one, so is
basically scanning or visiting the entire collection.

Now stream basically is a collection which will basically return a sequence of objects in the
form of a stream. Stream is a one concept that is there in the Java and this basically returns
stream. Remove is just like a clean but it is remove means a particular object if you want to

remove from the existing collection.

RemoveAll whatever the elements it is there if it is present there it will remove all those
elements. Removelf, if certain condition is satisfied then only it will remove so given under a
predicate it will remove. RetainAll, collection C it will basically remove all the element
expect those elements are mentioned in the inputs, so it is the method, so these are the

methods are there.

Every methods has its own functionalities and those functionalities is basically better can be
understood if we run a small program calling each method for a given collection then seeing
the output, all those things we will do when we will discuss a specific data structure in our

run actually. Now so these are the few methods.

(Refer Slide Time: 17:00)
NG

«=_ Methods declared in Collection

Mathod P
Int size() Returns the number of elements held in the invoking collection.
| default Sphterator<E> spliterator{) Returns a spliterator to the invoking collections.
default Stream<E> stream|) Returns a stream that uses the invoking collection as its source for
elements. The stream is sequential
‘M“l | toAmayl) Returns an array that contains all the elements stored in the invoking
collection. The aray elements are coples of the collection elements.
<> T[| toArray({ arroy| m Returns an array that contains the elements of the invoking collection. The
array elements are copies of the collection elements. If the size of array
equals the number of elements, these are returned in arroy. If the size of
array is less than the number of elements, a new array of the necessary
size is allocated and returned. If the size of arroy is greater than the
number of elements, the array element following the last collection
| element is set to null and an error is reported.
Table 7.2: The methods declared in Colection interface

There are few more methods in this interface which includes here. One important method that
you can check it the iterator, split iterator like, stream is also another form of the stream. Now
this method is very important, this method is called the bulk operation. What is the meaning?
Meaning is that if you want to copy the existing collection into an array, so if you want to
store the collection, now existing collection can be link list, can be tree, can be in the form of
a other hash set or whatever it is there and it basically convert the existing collection
whatever it is in the present form to store into an array form. Sometimes array is comfortable
for many programmer, they want to have this collection in the form of an array, so it basically
represent this one.

It is also same thing, it is basically the array means which collection you want to copy into
another array. If you pass it, it will, this is basically a static method rule and it will work like.
So these are the different methods those are there in collection and although methods should
be implemented by certain classes corresponding to a particular data structure that these
classes mean for. So this is the concept actually it is followed in Java collection framework

composition.

(Refer Slide Time: 18:15)

Interface List

=" |nterface List

* The List interface extends Collection and declares the behavior of a collection that stores a
sequence of elements, Elements can be inserted or accessed by their position in the list, using a
zero-based index.

* Alist may contain duplicate elements.
+ List is a generic interface that has this declaration:

interface List

Here, T specifies the type of objects that the list will hold.

* In addition to the methods defined by Collection, List defines some of its own, which are
summarized in Table 7.3.

Now let us come to the discussion of interface list, we will be able to see what are the
different methods are declared there in the list interface. Interface list is basically another
form of collection, another OA that a group of element will be stored is a list form. Now that
is definitely different from others form, array form like this one.

Now it also mean for storing any type of collection, any type of elements so that is why
template, so it is basically is an interface and this is the name of the interface list and the type
of element that it can hold is basically template, that means it can store any type of data,

integer, double floats, string or any user defined data it is there.

(Refer Slide Time: 19:18)
e, e

=" Methods declared in List .

Method ip

oid add(int index, € ob)) Inserts oby into the invoking st at the index passed in index. Any
-

preexisting elements at or beyond the paint of insertion are

shifted up. Thus, no elements are overwritten
boolean addAN|intindey, Inserts all elements of ¢ Into the invoking list at the index passed
Coﬂm:m Yextends E>¢) | Inindex. Any preexisting elements at o beyond the point of
o Insertion are shifted up. Thus, no elements are overwritten
Returns true if the invoking st changes and returns false
otherwise.

€ getlint index) Returns the object stored at the specified index within the
o Invoking collection
int indexOf{ Object.aby) Returns the index of the first instance of obj In the invoking list
= If obj is not an element of the list, ~1 is returned. |
int lastindexQf{Object oby) Returns the index of the last instance of obj in the invoking list i
Gl M obj is not an element of the list, -1 is returned. |
Ustiterator<E> listiterator{) Returns an iterator to the start of the invoking list |
Table 7.3: The methods declared in List interface (continued

Now let us see what are the different methods are declared there in the list interface. It is

basically very similar to the methods those are there, there are many name of the methods

will be very same as the collection because it is in way collection extends or list, basically list
extends collection interface. So all the methods are there but it is basically overriding method
because depending on the different structure the method are to be defined accordingly.

That is why name of the method may be same but the way how it can insert is totally
different but this method how actually it insert it need not to be worried by the programmer.
Programmer should not bother about it, programmer only should know that if I want to
maintain a structure according to this form then | should call this method for this form. And it
will work for you, that is all.

Now like this the add method as you see add, here one thing index that mean if you want to
add one element so this is the element. In a particular position the index is a position. So it is
index start from O to highest value. If it is not able to add it, it will not do anything but if it
can add it, simply add it and it does not return anything, that is thing is there.

AddAll basically start index and then argument is their collection. So if you give the set of
elements as an input and call this method and in index is another, so it will add all the
elements at this location from there. And then get method is just opposite to add method it
basically returns a particular object or elements which is present at a particular location,

index is a location.

IndexOf object, so that means if you pass as an input an object and it will basically check the
array, check the list and it basically gives in which location that object is present, that element
is present, so indexOf basically says that if the element present in which location if presents
are there. And last index Of as the name implies it basically in the list it will basically

indicates in which location the last element is present.

And then object obj means the list may contains duplicate elements, so object obj indicates

the last index of is basically the last occurrence of the elements.

(Refer Slide Time: 22:03)

~=_ Methods declared in List ;
weos ’]
Ustiterator<E> listiterator{int index) Returns an iterator to the invoking list that begins at the
=1 specified index
£ remove(int ingéx) Remaves the element at position index from the invoking list
T and returns the deleted element. The resulting st is
compacted. That is, the indexes of subsequent elements are
decremented by one
default void Updates each element in the fist with the value obtamned
1eplaceAIUnaryOperator<t> from the opToApply function
oploApply)
£ sﬂ(ml Index, € b)) Assigns obj to the location specified by index within the
Invoking list. Returns the old value
default void Sorts the list using the comparator specified by comp.
soat(Comparator<? super £> comp)
List<E> subList{int stort, int end) Returns a list that includes elements from start to end=1in the
ey involing list, Elements in the returned list are also referenced by

1 the imvoking object
Toble 7.3: The methods declared in List interface

So there are few more methods in the list which are again included here. So this method is
basically iterator that means for travelling. Remove method is basically removing a particular

elements from a particular location, it returns the elements removed.

And replaceAll it is basically indicates that all the elements of the current type will be
replaced by a particular elements. Set is basically same thing as basically replace like but it is
in particular elements, say particular object will be inserted actually and this is the one
method the sort, if you want to sort all the elements in an order it is applicable for the

numeric type data, so it is basically essentially is sorting method actually.

And subL.ist is basically is a part of a list and then this part will starting from a particular
location to end, so if the elements present there satisfying the start and end it will basically
return a particular portion of that list. So this is the different methods those are there in the
interface and we will be able to use all those methods when we will discuss list data structure,

namely the link list data structure for example. So this is the list interface.

(Refer Slide Time: 23:25)

<= Interfaces of collections

Interface Dewcription

Queve Queue extends Collaction to handle special types of lists in which elements
are removed only from the head

Likewise list, queue is the one, another structure. Queue is a specific or is a special data
structure which allows only to insert one end and delete it another end, so it is called the
insert add the rear position and delete from the front position. So there are two end actually,

one is the front and another is the end.

So insertion will takes place at the rear position and deletion will takes place at the front
position. So this concept is easier and then so this basically the in order to maintain a list

there are different methods are declared and that methods are declared in the queue interface.

(Refer Slide Time: 24:19)

<= Interface Queue

* The Queue interface extends Collection and declares the behavior of a queue, which is often a
first-in, first-out list.

+ However, there are types of queues in which the ordering is based upon other criteria.

* Queue is a generic interface that has this declaration:
interface Queue<T>

Here, T specifies the type of objects that the queue will hold,

* The methods declared by Queue are shown in Table 7.4.

Now queue likewise other classes that we have, other interfaces that we have discussed it also

allows you to store any type of objects, so that is why it is a template.

(Refer Slide Time: 24:33)

>~
— . Y
~=_ Methods declared in Queue ”
Method
element() Returns the element at the head of the queue. The element is not removed, It
S throws No$ Excoption if the queue Is empty.
boolean offer(T b)) Attempts to add oby to the queue, Returns true if obj was added and false
otherwise.
Tpeek() Returns the element at the head of the queve. It returns null If the queve is
[l empty. The element is not removed.
‘ Tpoli) Returns the element at the head of the queue, removing the element in the
| process. It returns null if the queue Is empty.
‘ Tremove|) Removes the element at the head of the queve, returning the element in the
| — process. It the £l ption f the g empty.
Table 7.4: The methods declared in nterface

Now the methods those are there let us have a quick look of the methods, so this basically
one method is called the elements, it basically return you the elements at the front of the

queue. Offer is the one method which basically allow to add one elements into the queue.

Peek is the basically one element which will just return the element at the front but this
element will just read not remove. Poll is the one element which basically remove as well as

return the element which is at the front. And then remove is the one method, remove is

basically remove the head basically same as poll sort of thing, it will basically return the

elements after removal.

And obviously, all those method return some exception if the queue is empty. So these are the
methods are defined there in the interface queue.

(Refer Slide Time: 25:49)

«=_ |nterfaces of collections

Intarface Oescription

Deque Deque extends Queue 1o handle a double-ended queue

And the de-queue is the another method. It is like queue, the difference is that it basically
double ended. Insertion and deletion unlike queue can be done at any ends. For example in
case of queue deletion is possible from one end, insertion is another end but here you can do
at any end actually, so both the ends. That is why it is called the double ended queue, so this
has more what is called the flexibility to add many insertion and deletion a person at the both

end like.

(Refer Slide Time: 26:24)

<= Interface Dequeue

* The Deque interface extends Queue and declares the behavior of a double-ended
queue.

* Double-ended queues can function as standard, first-in, first-out queues or as last-
in, first-out stacks.

+ Deque is a generic interface that has this declaration:
interface Deque<T>

Here, T specifies the type of objects that the deque will hold.

* In addition to the methods that it inherits from Queue, Deque adds those methods
summarized in Table 7.5.

Now this are the, okay like queue other list, they also allow you to store any type of
collection, so that is why the template.

(Refer Slide Time: 26:36)
.

=" Methods declared in Deueue .

[Method
I void addFirss(€ oby) Adds obj to the head of the deque. Throws an
| NiegalStateExcoption if a capacity-restricted deque is out of space
void addlast(€ oby) Adds obj to the tail of the deque. Theows an lllegalStateException if
| = o capacity-restricted deque s out of space
| Merator<E> descendingiterator| | Returns an iterator that moves from the tail to the head of the deque. In
other words, It returns a reverse iterator.
| EgetFiest() Returns the first element in the deque. The object is not removed
L=t from the deque. It throws NoSuchElementException f the deque s
| empty
Egetlast() Returns the last element in the deque. The object is not removed
— from the deque. It throws NoSuch€lementException f the deques
\ A
| boolean offerFirst(E obyj) Attempts to add obj to the head of the deque. Returns true if odj was
e — added and false otherwise. Therefore, this method returns false when
an attempt is made to add oby to a full, capacity-restricted deque
| boolean offerLast(€ oby) Attempts to add obj to the tail of the deque. Returns true
| Lo | 1 obj was added and false otherwise
| EpeekFirst() Returns the element at the head of the deque. It returns
o nul f the deque is empty. The object is not removed.
Table 7.5: The methods declaced in nterface (continued..)

And these are many methods similar to the name of the method. All the methods are basically
to add and remove or check whether it is empty or it basically return a part of the list and all
these things are there. Only thing is that it specify some methods to add in either first, as a

first element or last element or it is add any position all those things are there.

For example, addFirst, addLast and then getFirst, getLast. OfferFirst is basically adding

again, offerLast. So peekFirst means the just read only not remove. So these are the different

methods are there like the other methods, it is basically for insertion, deletion and traverse, all
these things are there.

(Refer Slide Time: 27:30)
oo T

~=_ Methods declared in Deueue .

Method Description
Epeeklast() Returns the element at the tail of the deque. It returns
null if the deque s empty. The object is not removed.
EpollFirst() Returns the element at the head of the deque, removing the element in
the process. It returns null if the deque s empty.
EpoliLast() Returns the element at the tall of the deque, removing the element in the
process. It returns null if the deque ts empty.
Epop() Returns the element at the head of the deque, removing Itinthe
process. it throws the deque Is empty.
void push{E oby) Adds obj 10 the head of the deque. Throws an
IHegaiStateException If a capacity-restricted deque is out of space
£ removeFirst(| Returns the element at the head of the deque, removing the element in
the process. it throws NoS If the deque Is empty.
boolean Removes the first occurrence of obj from the deque. Returns true if h
removeFirstOccurrence{Object oby) successful and false If the deque did not contain oby.
£ removelast(| Returns the element at the tail of the deque, removing the elementin the
process. it throws f the deque is empty.
boolean Removes the last occurrence of obf from the deque. Returns true if
removeLastOccurrence(Object oby) successful and false if the deque did not contain oby.

able 7.5: The me

thods declared ir Interface

Now what | want to mention here is that all the interface depending upon the particular type
of collection, the main operation those are required in order to maintain a particular collection
is basically adding element, removing element, searching element, sorting element, traversing
element and then check that whether that collection contain some elements or it is empty or
this kind of, so those are called as status operation. And there are also some methods for the

bulk operation is also there.

(Refer Slide Time: 27:58)

Interface Set

= » 9
~=- Interfaces of collections
Intertace Owuription
Set Extends Collection to handle sets, which must contain unique elements.
SortedSet | Extends Set to handle sorted sets.
NavigableSet extends SortedSet to handle retrieval of elements based on
closest-match

Now interface set is another group of collection which we will discuss in the next video.

(Refer Slide Time: 28:06)

®

—— NPTEL

~=_ (Class Collection .

= Classes incollection

Class
AbstractCollection Implements most of the Collection interface.
Abstractlist Extends AbstractC d most of the Listinterface
AbstractQueve Extends AbstractCollection and impl parts of the Qu h
] Ist Extend for use by a coll that uses het than
random access of its elements.
| Unkedst 2 linked list by extending
Arraylist Implements a dynamic array by extending Abstractlist
ArrayDeque Implements a dynamic double-ended queue by extending AbstractCollection
and implementting the Deque interface.
AbstractSet Extends AbstractCollection and implements most of the Set interface.
EnumSet Extonds for use with i
| HashSet Extends AbstractSet for use with a hash table
| UinkedHashSet Extends HashSet to allow (nsertion-order iterations.
| PriontyQueue Extends 10 Support a priority-based g Q
| TreeSet Implements a set stored in a tree, Extends
Table 7.6: The classes derived ass

NPTEL

—

| just want to mention the different classes. As we have already mentioned these are the
different classes are there, all these classes better can be understood while we discuss a
corresponding data structure. For example, here Array list is the class to deal with array,
Linklist is a class to deal with the link list concept in data structure, Priority queue is basically
data structure related to the queue operation.

Array de-queue is basically representing the queue in the form of an array but restriction that
insertion and deletion can be done only at the end not from the middle line. So these are the
different what is called the classes are declared and we shall discuss all these classes as a data
structure point of view and then their implementation and then how all this Java collection

framework using Java collection framework they can be managed.

So these collections actually that we are going to discuss have many collection classes
actually, all those classes therefore | can keep hold right now, we will not discuss at the

moment.

(Refer Slide Time: 29:17)

Java Data Structures with
Collection

~=_ Java data structures with collection

* You will learn how the different data structures that you can implement in your
programs using the utilty available in java.uti package.

* Overall, all the data structures can be broadly classified into four categories.
The broad data structures classification is shown in Table 7.9.

Data Structures List Queuve }1 Sot Map
Indexed [ArrayList ArrayDeque ’ HashSet HashMap
Sequential [LinkedList PriorityQueve] TreeSet TreeMap
Indexed with links LinkedHashSet LinkedHashMap
Bit string EnumSet EnuMap

Table 7.7: Java Supports to data structure

Now overall the different data structures those are suitable for different storing and retrieving
they can be categorized into this kind of form either indexed or sequential. The ArrayList
class which basically is an index type to maintain an array of elements, the LinkedList is a
sequential type that means it is a sequential form, ArrayL.ist is an indexed form.

Now the Array D-queue is again another indexed representation and PriorityQueue follow the
sequential representation. So these are the different classes those are basically related to the

data structure for certain type of collection.

And all those collection basically handled by corresponding classes in the, those are defined
there in the collection framework. That means their methods and everything are defined, their
methods or everything defined according to the declaration that we have learnt so far their

interface is concerned.

For example, LinkedList basically implements all the methods those are there in the interface
queue or interface list like. So these are the different classes that we will obviously discuss in

details when a particular data structure will be discussed.

(Refer Slide Time: 30:53)

7 https://cse.litkgp.ac.in/~dsamanta/javads/index.html

» https://docs.oracle.com/javase/tutorial/ +

And regarding the detailed story about different structure and the different classes, different
interfaces you can consult the Oracle documents, this is a tutorial form, it is very nice one but

it is very exhaustive.

Usually it is good for advanced programmer. For the beginners those are new to this concept
| should suggest them to consult this link, this link contains very easy and understandable
manner of all the classes along with some example illustrating how the different methods

defined in different classes can be used to perform certain operation.

However we shall discuss all these things in details throughout the course, so this is just a
quick view of the collection framework, a part. Next part will be discussed in the lecture, this
is regarding set. Set includes similar kind of interfaces and many classes there, their utilities

and others, okay. Thank you.

