Data Structures and Algorithms Using Java
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture - 60
Java Cursors

In this course, we have covered many different type of collection. The collections may be in the
form of an array, or it is a form of a set, or tree, or table, and graph whatever it is there. Now,
there is one important aspect, which basically | have used, although I did not discuss in details.
That how a collection can be viewed. Now, viewing a collection is basically called as a

cursoring. Cursoring means how to move from one element in a collection to others.

(Refer Slide Time: 01:08)

g0

CONCEPTS COVERED

» About Java Cursors
» Enumeration Interface

¥ Iterator Interface

» Listiterator Interface

» Spliterator Interface

So regarding these things, java developers have taken special interest to give many ways to move
across the different collections. So in this lecture, we will try to cover about java cursors. And

there are mainly four different types of cursors are there.

One is called the enumeration interface, the iterator interface, list iterator interface, spliterator
interface. In fact different collections, they basically implements all the interface so that the

different way a collection can be traverse.

(Refer Slide Time: 01:50)

About Java Cursors

== Java cursors

A Java cursor is a pointer (more precisely loop indicator), which is used to iterate (loop or
cycle or visit) or traverse or retrieve collection elements one by one.

When you are dealing with a collection, you have to perform CRUD operations.

The CRUD operations in JCF implies the following:

Create: Adding new elements to Collection object.
Read: Retrieving elements from Collection object.
Update: Updating or setting existing elements in Collection object.
Delete: Removing elements from Collection object.

You will see there are many classes in the JCF loaded with many methods in each to
accomplish the CRUD operations. In addition to the CRUD operations, it is also an important
aspect to traverse or visit each element in the cursor. For this very reason, Java developer
introduces a concept called Java cursor.

So we will discuss about the different cursors. And the cursors is, basically, as you know, so far
this collection is concerned, with collections we have to perform four different operations. One is
called the create, create a collection; then read, we have to read the different elements in a
collection; update collection if you want to modify; then delete is a removing some elements

from the collection.

Now, so there are many classes in the java collection framework, which basically with many

methods in order to accomplish all these operations. All these operations are together called the

CRUD operation. So there are, in addition to these CRUD operation, these means related to |
mean, read, insert, delete, move, whatever it is, there are certain operation is required that

operation is related to traversing or visiting each element in the cursor.

So for this purpose Java developer introduce a concept. This concept is called java cursors
concept.

(Refer Slide Time: 03:04)

== List of Java cursors

o Enumeration 1

o [terator
o Listlterator

o Spliterator

Let us learn each of the above-mentioned Java cursors, in details with appropriate illustrations.

Now, so far, these java cursor are concerned. There are four different type enumeration iterator,

list iterator, and then spliterator.

(Refer Slide Time: 03:18)

Enumeration Interface

So let us learn about each iterators, each cursor individually one by one. As the detailed
discussion is really not possible, so I should suggest you to the supplementary material that I

have provided at the end of this link or the lecture. There is a link you can follow this link to get
it.

(Refer Slide Time: 03:34)

__ :

<= Enumeration interface

* Itisaninterface used to get elements of legacy collections (Vector, Hashtable).
* Enumeration is the first iterator introduced in JDK 1.0.

+ The interface Enumeration has the following methods declared in it:

Method Description

public boolcan hasMoreRlements() ;| Tests if this enumeration contains more elements

public Object nextFicment () F Retums the next element of this enumeration
—_—

Now, let us first come to the discussion of enumeration interface. This interface is basically used

to traverse the legacy class, namely vector, and hash table. We have discussed about the java

legacy class and it is there. So enumeration is basically the first iterator or it is basically the
cursor introduced at very beginning in the JDK 1.0.

This interface has, this is an interface, as you know, so it does not have any constructor defined
in it. But there are methods are there; only two methods those are defined. These two methods
are called has more element, it basically check that if the collection has more elements or not, if

it has no elements while it is traversing then it return false otherwise return true.

And next element is return the next element that basically currently it is traversing. So these are

the two methods by which we can traverse enumeration of type it is there.

(Refer Slide Time: 04:39)

__'

== Example 60.1 : Demonstration of enumeration

The Collection class defined in java.ul.i1 package has its own implementation of the interface Enumeration.
Enumerations are also used to specify the input streams to a SequencelnputStream. You can create Enumeration
object by calling elements() method of Vector class on any Vector object. For example, if v denotes an object of the
class Vector class, then e is an object of type Enumeration referring to v is:

Fnumeral \'(m@— v.elemenls ()

// Continued to next...

And here is an example that you can think about. So let us see this example that we can use it.
And this basically demonstrate the enumeration as a cursor. We can create a vector as a
collection objects. So let us create a vector as a collection. And we just add some element into
the vector. So this basically create the vector objects.

Now, vector object is created. Now, simply by putting this print In statement for this vector v, it
basically gives the overall view or whole view of the vector objects. But we want to parse, we

want to scan it or rather traverse it one by one. Then how it can be done?

So this basically done by creating some elements e of type enumerate e and that basically
elements method which is define in the vector class can be called. So either v is a vector. If we
call the method elements then it, basically the enumerated, which basically is a traverse form of

all the elements those are there in the vector v class.

Now, you can recall when we are discussing about the file input-output system, there we can use
the sequence input stream, there means we can pass the two or more files and then it basically
traverse one file at a time where the file is basically is a collection and then it basically traverse
and then concatenate into a another third file that we have already checked it. The sequence input
stream class, while we are discussing in the discussion of file 10.

Now, let us continue this program again. We can create one enumerator for the vector sets,

vector collection v.

(Refer Slide Time: 06:27)

__'

<= Example 60.1 : Demonstration of enumeration

1/ ... Continued from previous

And this is the next part of the program that you can check it here. So these basically create the
enumerator for all the elements v. Now, this enumerator can be traversed. Here is has more
elements that mean we just starting from the very beginning of the elements, which is there, and

then we can just parse it.

Here, just as the enumerator are the integer of type, so we need to casting it. So that is why
integer is there. So it basically written the i. So next element written, the next element in the

enumerator list, it basically casted in integer form to and then finally print it.

So this will basically print all the elements those are there. So system dot out dot print In v and

this basically is basically in this case, give us both same, similar output as you can notice.

(Refer Slide Time: 07:19)

__'

== Limitations of Enumeration

o [tisapplicable to only Collection of legacy classes, like Vector and HashTable.

o Compare to other cursors, it has very lengthy method names: hasMoreElements() and nextElement().

o | In CRUD operations, it supports only read operation. It does not support create, update and delete
operations.

o It supports only forward direction iteration. That's why it is also known as uni-directional cursor.
e

Next, we will discuss about Iterator with some suitable examples.

So this is the cursor for the enumeration type. And there are few points that you should note that
it is applicable to collection of only legacy class. We cannot apply this kind of program to other

collection, like array, list or, t list, or hash may like this one.

And it is basically criticized that it has very long name, absolute no, so for this, I believe.
Because naming is good to understand about it, so this is some people criticize it. And then in
CRUD operation, it supports only read operation because it cannot, this is a one important thing
it does not support create, update and delete while traversing. That is one important consideration

that you should note.

Because while traversing, only printing may not be good one, but while traversing, if you
perform certain CRUD operation like creating or some adding some element into it, or deleting,

or updating, then it does not support this kind of iterator or traversers. But there are some other

traversers, it is possible that can help it. And moreover, it only supports forward direction
traversing. That is how it is called the unidirectional cursor.

(Refer Slide Time: 08:27)

Iterator Interface

<= |terator interface

The limitations in Enumeration interface had been addressed in JDK 1.2, and introduced a
better Java cursor called Iterator.

+ Itis a universal iterator as you can apply it to any Collection object like Set, List, Queue,
Deque and also in all implemented classes of Map interface.

* By using Iterator, you can perform both read and remove operations.
+ The Iterator interface is fully implemented by Collection classes.

+ The Iterator interface defines three methods as listed below.

Method Description

public boolean hasNexl(); [Retums trucif the ilcrator has more clements

public Obj Retumns the next element in the iterator.

public void remove(); Remove the next element in the iterator. This method can be called only once per
call to next().

Let us discuss another cursor that is called the iterator cursor, and it is defined as an interface;
iterator interface. Whatever the limitations that we have learned, so far the enumeration interface
is concerned, it has been addressed into this iterator interface. This interfaces in one sense, it is
called the universal because this iterator interface can be applied to many collections like set, list,

queue, dequeue.

And also, it can be implemented in the map interface also that we have already studied and we
have exercised while we are discussing all these collections in our previous learning. Now, the
speculative of these interface is that using this cursor iterator, we can perform read and remove
operation. However, we will not be able to perform any place or addition operation. Remove
operation is possible but replace or addition operation is not possible. And let us see how this

iterator or cursor you can use in your program.

Now, in order to use this cursor, there are three methods that you can rely on. These methods are
has next, next, and remove. Remove is basically for removing purpose. And has next or next is
basically to check that it has further element or not. And if it has, then it return the next element,
actually.

(Refer Slide Time: 09:58)

== Example 60.2 : Iterator object with ArrayList class

So let us have some illustration of this interface. And one illustration | gave it to you so that you
can understand about it. This program gave a quick demo about this cursor iterator and we create
one collection. The name of the collection is array list, is a array list of integer. And we create
the array list here using this method. So this basically, this are list contents 10 different elements

in it.

This is a usual print In statement, overall printing of this statement. But we are interested to

traverse it using our cursor iterator. So this is important code that you can think about. We create

an iterator. It is always we have to create a iterator object for that. So this is called for the array
list collection, this is the method that we have used, the factory method that you should use to
call this iterator. So this iterator is easy to traverse.

Initially, it is starting from this one, now here, has next so it takes that it has the element. So it is
basically currently pointing at 0 and then it return the Oth element. So this is basically integer
value it is there because we have defined for integer collection, so it written integer. And then, i
store the temporary value it is be. What it returns, it store it there and it print it. That is fine. So

this basically traverse each element and print it there.

Now, what we are doing here, if i dip 2 equals to 0, that means if the number is even, then we
just remove it. So while we are traversing, we are removing it, and then after the entire traversal
is over, the array list collection will obtain after removing all the even numbers. So if we print
here, you will see it basically gives the modified array list after removing all the even numbers in
this.

So this is one example that you can check that okay, it basically, how these cursor work for the
collection array list. So this this kind of illustration can be extended to other collection also,
which we have already exercised there. 1 am mentioning how they are, basically merits and

demerits of it.

(Refer Slide Time: 12:04)

= Example 60.3 : Add or remove while using Iterator

Be careful.

SGE
ArrayListestring () : You cannot add or remove elements to the

collection while using iterator over it.

Hence, it will give a run-time exception.

Now, here is another example. As | have mentioned, that this kind of iterator class cannot be
used in order to replace or add some new elements. So this is the one example that you can see
for this purpose. This program give a demo. While we, if we want to attempt at some elements or

replace some elements, while we are traversing using iterator cursor.

So for this purpose, let us create a collection of a user-defined class say, books. Assume that
books is already defined somewhere. So this program, assume that books class is declared there,
or it can be a string also. We can create a collection of string also, fine. Otherwise, if you use a

user-defined, you can use that also no issue.

So this basically, we create. We insert three different elements into this collection books, which
is of type string. Now, using for each loop and you can see for which loop is the one also default
cursor. Basically, it also traverse just like while loop for loop and this is for each loop. So it
basically, for each object belongs to this collection books, it basically moves or basically visits. It
visits means prints, and then while we are doing, we can add one object, say, this one; so we can

do it also.

So this is possible because we can do a usual addition while we are using for. So it basically,
each time, we can add one elements here, new elements will be added and the collection allows
duplicate entry. So it is possible. Now, let us come to the discussion of the same thing but using

our cursor iterator.

(Refer Slide Time: 14:12)

== Example 60.3 : Add or remove while using Iterator

Be careful,
—

rgs()(
s = new ArrayList<string>(); You cannot add or remove elements to the

collection while using iterator over it.

Hence, it will give a run-time exception.

Now, this point is interesting to note. What it basically does for, does here. So we create an
iterator for this collection, books. So it check that okay, it is in starting from this, so we can do it.
Now, it basically start, use the new collection here because in this case, the collection will be this
plus all the elements are added. So that also you should note it. So when you see the output, you

can get it.

But anyway, this basically program is to illustrate some limitation of these cursor interface rather
not limitation, it basically is a constant we can say. So it basically traverse it. So this is not an
issue, this is also fine. It basically traverse it print also. But whenever it comes here, the add
method or this replace method instead of remove, we can say replace. It is basically replace
method. We can use a replace by; remove ¢ means, it basically replace. So it basically, ¢ is

removed.

Now here, if you see, this basically point out an error. This because it cannot, this iterator can or
should, it cannot allow you to do addition into while it is traversing. Now, this remove is fine, it
can do it. But if we replace this method by replace, | mean, if you write another call books dot
replace c, then ¢ by another string, then you can see it is also not permissible. So here, you have
to be careful about that this kind of iterator does not allow to add or remove any elements while

it basically this iterator works. Or it, you traverse using this iterator.

(Refer Slide Time: 16:04)

<= Limitations of Iterator

o It supports only forward direction iteration. That is, like Enumerator, it is also a uni-directional
cursor.

o Only read and remove is possible. Replacement and addition of new element is not supported by
Iterator

So this is the only limitation that it can do it. This is just like enumerator it always allow you for
forward direction only, not that backward direction or to and fro direction. Only read and remove

is possible, but no new element can be added in this method.

(Refer Slide Time: 16:22)

Now, here, let us consider this list iterator interface. List iterator interface is the another interface

which is more smarter interface of what is called the cursor than the other two cursors, like

enumerator and list interface.

(Refer Slide Time: 16:47)

__'

== Listlterator interface

+ Itis only applicable for List collection implemented classes like ArrayList, LinkedList, etc.
e e ———t

* It provides bi-directional iteration. —_
—_— - (_’_/

* This cursor has more functionality than iterator.
’—’Ir—

+ Listiterator interface extends Iterator interface. So all three methods of Iterator interface
are available for Listlterator.

* In addition, there are six more methods, which are listed next.

Method ,——~ Description

public r,-mlﬂn hasNext () ; } Retumns true if the iterator has more elements

public Objdet next.(); Returns the next element in the iterator

public void\ remove(); Remove the next clement m the sterator. This method can be called only
once per call to next()

Now, let us have the methods which are defined here. Now, regarding this interface, this
interface is applicable for any type of list; only applicable for list collection. You can understand
list means like array list, link list, and others. So it is basically applicable to link list structure,

actually.

And here, you see, all these link list structures which are mentioned in java collection
framework, they use double link list. This means that both forward and backward traversal is
possible. This means that this cursor allows both bidirectional movement. And it has the same
functionality than iterator, means it can remove also while it is traversing. In addition to, it has

more functionality that we will discuss.

Now, list iterator interface extend the iterator interface. So all the methods those are declared
there is also available to it. In addition to, there are six more method, which also possible. These

are the method as we have already experienced with iterator, cursor also it is applicable.

(Refer Slide Time: 17:57)

<= Methods of Listlterator Interface

Method Description

void add (R obj) Inserts obj into the list in front of the element that will be refumed
= by the next call to next()
The action specified by action 1s executed on cach unprocessed
clement m the collection. (Added by JDK 8.)

Retumns true 1f there 1s a next clement. Otherwase., relums
false

boolean haslrevious() Retums true if there 1s a previous clement. Otherwase. retums
false
T onext() Refums the next element. A NoSuchElementException is thrown if
—_—
there is not a next element
int nextindex() Retums the mdex of the next clement. If there 1s not a next

clement, returns the size of the st
F previous() Retums the previous element ANoSuchElementException
is thrown if there is not a previous element

inl previousindex() Retumns the mdex of the previous clement. 17 there 15 not a previous

clement, retums 1
void remove() Removes the cument cloment from the bst An
legalStateFxception i thrown if remove() is called beforc next() or

previous() is ivoked

Assigns 0bj 10 the current clement. This 1s the clement last retumed|

by a call 1o cither next() or previous|

Now let us see what are the additional methods, which are defined in this class specially. So
these are the methods which are declared here. It add, it basically allows add, whereas the simple
cursor iterator cannot allow. And for each remaining also, it is allowed here; has next and we
have has previous. It is basically for bidirectional from to and fro also it is possible. Next method

we have already declared, next index also, it basically return if you want to see.

The previous element, it return what is the previous element; index of the previous element.
Remove, and set, here set means it is basically replace. Now, so this iterator compared to the
simple cursor iterator, provides more functionality and therefore, more flexibility to the
programmer. So it supports more flexibility that is why many people, only it has limitation that it

cannot be applied to all cursor, except the array list, link list cursor, you can apply it.

(Refer Slide Time: 18:51)

“= Example 60.4 : Listlterator with ArrayList collection

()i

itr = al.iterator();
o) {

itr.next();
(lemenl +)i

tem.out.printin() ; // Continued to next...

Now, let us consider this as an example that we can apply. So we create a collection, let it be
array list, and add some element. So initially, the collection is loaded. Now, we are using one
iterator. This is the iterator, has next, and this is basically simple, using our cursor iterator. Now,
we can apply the same. We can apply the same okay for the same purpose. We can apply the list

iterator method also.

(Refer Slide Time: 19:25)

== Example 60.4 : Listlterator with ArrayList collection

/1 .Continued from previous

Here, we are using for the same collection, the list iterator. So for which this method needs to be
called on this cursor collection. This is the iterator and here we are traversing. It is basically
same, but here, you see, at the time of iterator, we basically can replace element. So we are

replacing here this one. So this is allowed. It will not give any error.

And also, you see, we can have some backward. For this backward, we can call hash previous,
and then it is a previous element. So from back to front direction also, we can move it. So both
way direction, this interface can allow you. So this is, so this basically shows that how it is more

advantageous than the other cursor that we have discussed about it.

(Refer Slide Time: 20:15)

<= |istlterator cursor

Note:

+ You will not be able to modify the contents of a collection or obtaining elements in
reverse order, then the for-each version of the for loop is often a more convenient
alternative to cycling through a collection than is using an iterator.

+ Recall that the for can cycle through any collection of objects that implement the
Iterable interface. Because all of the collection classes implement this interface, they
can all be operated upon by the for.

So this is more useful cursor than the other two cursor, other two cursors, namely enumeration

and then iterator that we have covered.

(Refer Slide Time: 20:35)

= Example 60.5 : Cycle through a collection using for-each

a(String args()) {

als = new ArrayList<integer>();

Now, there is one more example. It is basically called the cycling through a collection using for
each loop. So this example tells about that how the cycling, cycling means if you want to end, it
can go to the previous and actually cyclic in nature. So this is the one array list collection. And
here, using for each, you can just see and come to whenever you go, it will basically go to the

end actually.

And then, again if you, this basically calculate the different values of this one, integer v values,
and then the result is basically. It basically print and it basically repeat this one. So here, use for
loop to display the value; here, use the same loops to add the value of each interface. So you can
cyclic it because we have started it and again come back to 0 and then you can do it; so cyclic.

And using list iterator also, you can do the cycling; that is also possible.

(Refer Slide Time: 21:33)

.
8

== Example 60.5: Cycle through a collection using for-each

Note:

o (learly the three methods that Listiterator inherits from Iterator (hasNext(), next(), and
remove()) do exactly the same thing in both interfaces. The hasPrevious() and the previous
operations are exact analogues of hasNext() and next(). The former operations refer to the
element before the (implicit) cursor, whereas the latter refer to the element after the cursor,
The previous operation moves the cursor backward, whereas next moves it forward.

o Listlterator has no current element; its cursor position always lies between the element that
would be returned by a call to previous() and the element that would be returned by a call
to next()

o Please note that initially any iterator reference will point to the index just before the index of
first element in a collection.

o We don't create objects of Enumeration, Iterator, Listlterator because they are interfaces.
We use methods like elements(), iterator(), listiterator() to create objects. These methods
have anonymous inner classes that extends respective interfaces and return this class object,
This can be verified by below code.

Now, what we can summarize from the previous discussion is that the enumerator interface one
way; then cursor iterator, that is also one way. Cursor iterator on the contrast to enumerator, it
can allow certain CRUD operation, namely, remove, but it cannot allow add and then replace
operation, whereas the list iterator can be in two ways and allows all sort of modified operation

that is possible.

(Refer Slide Time: 22:08)

<= Example 60.6 : Iterators references of different types to the same collection

java.util.
java.util.

Now, this basically is an example of list iterator with respect to vector. Vector, okay; let us see,
the legacy class vector, we can have the enumeration set for this. So here, basically, this is a
iterator reference of different types of the same collection. | want to see how for the same

collection and the different iterator can be called.

Here, we can see the vector. Vector has some collection list iterator cursor, enumeration cursor.
We want to apply all this three cursor on the vector collection. Now, vector is one element vector
is the one collection which basically list iterator also supports. In addition to array list and link

list, vector also because vector stored in a dynamic position. So it can also.

Now, this example shows on the vector how it can be applied. So it is enumeration e, iterator this
one. And then we can apply list iterator over the vector v. And here, we can apply on the
enumerator. And here, we can apply on the iterator. Then we can use whatever the way we can

iterate. For each iterator, you can traverse it.

So this example shows that this iterator, the three different iterator that we have learned, can be

applied to the same. That is a case, of course, but only in the context of vector, it can be applied.

(Refer Slide Time: 23:37)

Listiterator Limitations

<= Example 60.7 : Iterators references of different types to the same collection’

Itis the most powerful iterator but it is only applicable fto List implemented classes, so it is not a universal iterator.

public ng getiesignation() {
return designalion;
} // Continued to next...

Now, there are certain limitations of the list iterators that we want to discuss about it. The
limitations is that this iterator is not ((thread))(23:50), say, that is the one. But it is the powerful
iterator, but only it is applicable to list, list that we have told. In addition to this, vector also can

be. And that is why this can be consider as a more useful iterator.

Now, this iterator also can be applied to user-defined object as a collection. And here, we can
define one object of, one class we are defining. The name of the class is employee. And this is
the usual definition with constructor, getter, and setter methods. Now, let us first discuss the
class declaration, and then we will come to the creation of a collection of these objects, and then

iterator over it.

(Refer Slide Time: 24:34)

== Example 60,7 : Iterators references of different types to the same collection’

// ... Continued from previous

// Continued to next...

So this basically completes the declarations of class. Then here, we just create you see, we want
to make this employee class. So that it is iterable, that is one important thing that we have to then
only you can iterate over it. And we create a collection, we can create a collection is basically list

type.

So employee initially it is learn, then we can create some objects of it and add into this collection
employee. So this employee then contains so many objects with this one. Now, you can again
use the map also there you can use it and then do it. But anyway, we are discussing this thing in

the context of simple list.

So list is an interface for which we are using basically is a collection as a array list here. So array
list is the collection whose type is list because it is the interface because array list implements a
list so that how you can do that. So this basically, essentially, employee is a collection of array
list and the array list contains few objects which are here. Now let us see how we can iterate over

these objects.

(Refer Slide Time: 25:55)

== Example 60.7: Iterators references of different types to the same collection’

1/ ... Continued from previous

|

So | want to say that this iterator can be applied to any type of elements in the collection, and if
you want to apply your user-defined, then you have to implement the iterable. That is the only
thing that you have to do it. Then only you can apply, otherwise, you will not be applied. Now
here, you can if you want, then you can override this iterator method according to your own

customizations. So basically, we are just overwriting this customization.

Then in this method, we are just using either for each loop or a simple cursor iterator or list
iterator you can apply to traverse all the elements here. It is now possible. If you do not
implement using this one, you will not be able to do that. That is what | want to mention in this
example. So you can test it and you can do certain modifications so that whether it works or not,

then you will be able to realize that how these things works.

(Refer Slide Time: 26:44)

Spliterator Interface

{erl

= Spliterator interface

+ Spliterator, like other Java cursors, is for traversing the elements of a collection.

Unlike other cursors, it can traverse both in parallel as well as sequential manner. The
name s 5o because it is actually splitting + iterator to accomplish a parallel traversing.

i

It was included in JOK 8 and is defined by the Spliterator interface.

Compare to other cursors, it offers substantially more functionality.

The most important aspect of Spliterator is its ability to provide support for parallel
iteration of portions of the sequence and hence providing parallel programming.

The Spliterator defines 8 methods which are listed next. All methods are duly
implemented in Collection classes.

Now, let us come to the spliterator which is the another what is called the new addition of the
java developer from the Java Development Kit. It is called the spliterator. It is just like other java
cursor to traverse the element of a collection. But only difference is that, like other collection, it

basically allow parallel traversing and all parallel traversing in a sequential manner.

So it is basically if you want to split a list, and then traverse all these at in a parallel fashion, then
that, this cursor you can use it. That is why it name is spliterator iterator. It basically comes from

splitting an iterator. So this way it basically allows parallel traversing.

So it was introduced recently in JDK 8 and defined by an interface is called a spliterators
interface, then it implements in all other collection classes those are basically defined there. So
compared to the other cursor, it has substantially more functionality, it is gives more utility
functions, we can say the most important aspect of spliterator is ability to provide support for

parallel processing.

That is why it is used and, otherwise, it basically does the same thing as the other iterator does it.
And you can again repeat all the programs or illustration, illustrative program that we have given

in the context of this iterators then you can get its advantages.

(Refer Slide Time: 28:30)

== Methods of Spliterator Interface

Description

Retums the charactenisties of the mvoking sphierator, encoded mto an
mleger.

Lstimates the number of elements left to iterate and retums the result
Retuns Long MAX_VALUE if the count cannot be obtained for any

Teason

Applics action to cach unprocessed element in the data source

Returns the comparator used by the mvoking spliterator or null if natural
ordenng 18 used. I the sequence 1s unordered. MlegalStateException s
thrown

If the invoking spliterator is sized. returns the number of elements left to
iterate. Returns -| otherwise

Retumns true if the mvoking sphitcrator has the charactenstics passed m

N8

val. Relums false olherwise

pec Exceutes actton on the next clement the iteration. Retums trueif there s a

a i

next clement. Retums false 1o clements remam

If possible, splits the ivoking spliterator, retuming a reference to a new
spliterator for the partition. Otherwise, returns null. Thus, if successful. the
ongmal sphiterator iterates over one portion of the sequence and the retumed
sphiterator icrates over the other portion

So this is about a different other extra method by which you can apply to this spliterator and you
can get it. Here, we have mentioned few method is a characteristics, so it returns the specific
properties of the iterator that it can return. And there are few method, estimates size, all these

things is basically regarding parallel version, parallel traversal, all those things is required.

Those description you can have it from here and you can practice it in your program and calling
these methods. And then you can get it. And then you see that basically, it has more powerful

features than the other three cursors that we have discussed.

(Refer Slide Time: 29:10)

== Example 60.8 : Spliterator illustration

G

[/ Continued to next

So applying these things is very similar. As an example | have given here, it basically does not
give that much flavor because it is only a few elements are there. If it is large element, and then
split it, and then apply for each portion, then you will be able to see that how it works better. So

that you can try with another program.

(Refer Slide Time: 29:31)

== Example 60,8 : Spliterator lllustration

/1 . Continued from

Note:
+ The program demonstrates both tryAdvance() and forEachRemaining|).

*+ These methods combine the actions of Iterator’s next() and hasNext() methods into a
single call.

Here, we have done the same thing actually. Here, we basically split it, and then on splitting part,

we can call this and then how it work it is there. And here, we again using, in addition to this

spliterator, we are using for each with the lambda expression also to print it. So basically, in that
sense, it can be combined with the own iteration. In addition to other iteration also, it can be
mixed. That means, it is basically a hybrid casterization it can be possible with this one.

So this example basically shows how it is possible that spliterator can be combined with for each
or for each remaining portion it is. And there are some other methods which we have listed there
and how they can be exercised. This program basically illustrate this concept. You can run this
program and you can check that how the parallel traversing is possible with this cursor, the
spliterator.

(Refer Slide Time: 30:39)

== Example 60.9 : Utility of other methods of Spliterator

1/ ... Continued from previous

n) -> System.cut.printin(n));

IsLrean() ;

itr2 = splitrl.trysplit();

):

ng((n) -> System.out.println(n));

So this program, you can run it and you can check that how the different features of the

spliterator can be enjoyed in a program.

(Refer Slide Time: 30:48)

== Utility of other methods of Spliterator

Have a look at tryAdvance() method. It performs an action on the next element and then advances the iterator. It
is shown here:

boolean LryAdvance (Consumer<? super 1> aclion)

Here, action specifies the action that is executed on the next element in the iteration and Consumer is a
functional interface that applies an action to an object. It is a generic functional interface declared in
Java.ulil.funclion. It has only one abstract method, accept(), which is

shown here:

void accepl.(T objRel) |/ Here T is type of object reference.

For implementing our action, we must implement accept method. To implement accept method, here,
lambda expression .This will be more clear from below example.

How to use Spliterator with Collections: Using Spliterator for basic iteration tasks is quite ea
tryAdvance() until it returns false.

So this basically has that two methods, especially very important in this iterator is called the try
advance and accept. Here, the try advance perform an action on the next element and then
advance the iterator. Whatever that performance means is, addition, while all modification,
whatever you can do that, you can do that. And it can also allow you to perform another extra

operation. It is generic and functional interface declared in java dot util function.

One method is called abstract method. It is for implementing any action of your own that you
want to do on a particular collection. So that action, accept method you can overwrite and then
accordingly, you can customize whatever the method during your collection that you want to

have.

So there are two important features that is basically advanced features by which you can enjoy

much more while you are traversing a collection.

(Refer Slide Time: 31:58)

<= Example 60.10 : Simple Spliterator using tryAdvance() method

1/ Continued to next

So these are the different cursor, different cursor that we have discussed.

(Refer Slide Time: 32:03)

<= Example 60,10 : Simple Spliterator using tryAdvance() method

/1 . Continued from previous

while(splile. LryAdvance((n) => Syslem.oul.prinlin(n)))
=0 tvAdvanco () for gotting. absolutc vatuestact

ArrayList<o>0;

c((n) -> al2.add(Math.abs(n))));

cl(n) -> system.out.printin(n)));

<= Example 60.10 : Simple Spliterator using tryAdvance() method

1/ . Continued from previous

while(sp! iLe. LryRdvance((n) => Sy

Here is another example showing the illustration of try advance method that you can check that
how it basically do some activity while it is traversing. Basically addition, removal, and all these
operations that we have mentioned here. We can generate random number, we can add sum into

it; all those things, we can do it.

(Refer Slide Time: 32:24)

<= Simple Spliterator using tryAdvance() method

NOTE:

* How tryAdvance() consolidates the purposes of hasNext() and next() provided by
Iterator into a single method in above example. This improves the efficiency of the
iteration process.

+ To perform some action on each element collectively, rather than one at a time
Spliterator provides the forEachRemaining() method, it is generally used in cases

involving streams. This method applies action to each unprocessed element and
then returns.

And then accept method is okay, you can overwrite it and then customize this method so that you
can get it. And as | told you, spliterator is good that okay, it can be combined with other iterator

in addition to this also.

(Refer Slide Time: 32:37)

» The Complete Reference, Herbert Schildt, 9™ Edition, Oracle Press

» https://cse.iitkgp.ac.in/~dsamanta/javads/index.html

» https://docs.oracle.com/javase/tutorial/

Sepeeee————— e

And for many more detailed discussion, | have already stopped with some more supplementary
materials here. So | should advise you to go through. And this is the one document that you can
think about so that you can learn much more about this one.

(Refer Slide Time: 33:02)

b

f
A
)

- a N

DR MONALESA SARMA
Assistant Professor
1T KHARAGPUR
N

Wy s g
) L] A " ' 7, M
3 s 2 . 3 X
ib
5 \ 4 v 4
}
: < - z . "
N N (W

P P
NILANJAN SINHABABU SUBITRASANEAR CTIATTERIER.
M. Scholar
111 KHARAGPUR

And so, this is the end of the last video lectures. | want to acknowledge behind the contribution,
the different people that I got during the whole process. So it was a very long journey. | started
the preparation of this court two years back.

As you can see, there are many materials are involved, including the slides, and then contents,
the labeling, and so many things are there. So it was a huge job from us. There are many people
who supported it. And here are the pillars, we can see behind this course. And Dr. Monalisa here,
who helped me to prepare the content in an exhaustive manner so you can see how the coverage

of the different topics.

There are many books available related to these java data structure, but no books covered the
data structure in that sense, which basically required, which we have taken enough efforts so that
essence of data structure using java program can be obtained. This is really a novel effort from
our side. So Dr. Monalisa has helped me to prepare many materials in this regard. And then

content is enriched with her contribution.

And another people who helped me a lot, preparing particularly the slides is Nilanjan. So you can
see so much slides. Although many mistakes, errors are there, definitely it is our limitations, we
could not correct. So many errors are there, but we have tried our best to do as much as error-free

as possible.

Now, you have also experienced with many programs related to the different discussion. So here
Subhrasankar helped me a lot. So whenever | need some programs to be tested or some relevant
or some program is required relevant to a particular discussion, so he always came forward and

then supported with programs.

And regarding the content management and particularly, weblink and other preparation, HTML
document, you can find the link that | have given. So here, Priyabrata helped me a lot. So these
are the help that I cannot really, no appreciation is enough to tell thanks. Anyway, so they are the
main pillar. And other than, many people also directly, indirectly they are most of my students
helped me. And then, I really obey my most sincere gratitude to them.

(Refer Slide Time: 35:41)

Chans to..

CBiransy,
Ramacharyuly
OBaurar,
Rk
Uttam ..

And there are many thanks to other people, particularly NPTEL staff, all the lecture video
recording you see, we have done it during this lockdown period. It is really a very trying time,
very difficult situation because of that COVID pandemic. So there are many NPTEL, those are
the people basically help me a lot. And then they took their life in risk and then come to this

recording studio and then helped me.

Really they are very sincere. | really thanks to be Bivanshu, Ramu, Saurav, Priyanka, Uttam for
their genuine service, and they are disciplined work and systematic way so that this recording is

possible today. Thank you very much.

First of all, next, | want to give that thank you to all of you who are attending this course and
forwarded your suggestion, feedback, and my effort, my whatever the level that | have put that |

think is success only if | see that it really helps you to learn the concept better.

With these things, | want to conclude it. Thank you very much and wish you all the best and fun

of reading and learning this concept. Thanks a lot.

