Data Structures and Algorithms Using Java
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture - 59

Miscellaneous Utilities

(Refer Slide Time: 00:45)

NPTEL ONLINE CERTIFICATION COURSES

Data Structures and Algorithms Using Java

Debasis Samanta
Department of Computer Science & Engineering, IIT Kharagpur

Module 15: String and Utilities
Lecture 59 : Miscellaneous Utilities

So in data structure, data is very important and as we have witnessed, the data can be of different
form. Now, so we have already checked about data in view of collection, where the data can be

stored, data can be retrieved in a fastest way.

But there are certain unique data type that is required, which is basically from the iteration point
of view. Many utilities program which required to be discussed. Now, in this lecture, we will

study about the miscellaneous utilities and handling data in different form.

(Refer Slide Time: 01:15)

8 ©

CONCEPTS COVERED

» String Tokenizer

» Date

» Calendar

» GregorianCalendar » TimeZone

S &
= » SimpleTimeZone (\
% ¥ Locale \‘j{)

» Currency

Now, the different form of data, which are very important, those are basically called date data,
calendar data. And calendar can be of Gregorian calendar or any other calendar, then calculation

of time zone, and then locale and currency and so many things are there.

And before going to discussion about this miscellaneous utility, one important another class is
there; it is called the tokenizer. This tokenizer is very important when you process language or in
the natural language processing activities. So | will start with first-string tokenizer, then I will

discuss about most advanced data from the utilization point of view.

(Refer Slide Time: 02:00)

StringTokenizer Utility

__'

== StringTokenizer class

+ The processing of text often consists of parsing a formatted input string. Parsing is the
division of text into a set of discrete parts, or tokens, which in a certain sequence can
convey a semantic meaning.

* The StringTokenizer class provides the first step in this parsing process, often called
the lexer (lexical analyzer) or scanner.
G E————

+ StringTokenizer implements the Enumeration interface.
—_—— —_——

+ Therefore, given an input string, you can enumerate the individual tokens contained
in it using StringTokenizer.

Now, let us first discuss about string tokenizer, and it is basically one utility. As you know, string
tokenizer basically the idea is that given a string, it basically return the token. What is that token?
A token is basically is a subpart of the string or other we can say substring of a string. But all

these tokens are separated from another token with certain, what is called the tokenizer concept.

So here, actually, this string tokenizer can provide parsing of a large string. And these are
basically called, are useful for lexical analysis where the system programs needs to be developed.

Or parser, lexical analysis, also called parser or scanner or sometimes it is also called lexer.

Now, there is a class. The name of the class is called StingTokenizer, which is define in java dot
util, which basically this class is implements the enumeration interface. Enumeration is an

interface, basically it store the enumerated type data.

So here, given an input string, you can enumerate the individual tokens, which content in an
input string using this string tokenizer. Now, let us consider the illustration of this with an
example so that you can understand better.

(Refer Slide Time: 03:25)

== Constructors of StringTokenizer class

Constructor Description
StrinqTokenizer (String slr) Constructs a string tokenizer for the specified string
StringTokenizer (String str, String ‘;‘W Constructs a string tokenizer for the specified string
StringTokenizer (String str, String delim, | Constructs a string tokenizer for the specified sting
boolcan returnhelims)

The constructor are there in order to create the object of type string tokenizer. | have given here,
if you pass an input string, then string tokenizer object will be created. Here the string with string
delimiter that mean up to which string that you want to create. And here, is basically same thing
as the second string. But here, return delimiter; whether delimiter will be included or not. So

there the perspective, three different perspective the string object will be created.

(Refer Slide Time: 03:55)

== Method of StringTokenizer class

Method Description

countTokens () Caleulates the number of tmes that this tokenizer's nextToken method can be called
before 1t gencrates an exception

hasMoreElements () Returns the same value as the hasMoreTokens method

hasMoreTokens () Tests if there are more tokens available from this tokenizer's string.
nextElement () Retums the same value as the nextToken method, except that its declared retum
——— value is Object rather than String.

nextToken Retums the next token from this string tokenizer.

nextToken (String declim) | Retums the next token in this string lokenizcr's strmg

Now, let us have these are different methods which are defined in string tokenizer class, namely
count tokens, whether it has more elements or not, it return Boolean; has more tokens or not,
next element, next token, and next token with delimiter. So these are the different methods those

are, defining the class StringTokenizer, which can be used to manipulate this method.

(Refer Slide Time: 04:18)

== Example 59.1 : Simple StringTokenizer parsing

d main(5tring args(]){

enices st new Stringtokenices (PG K)
while (sL.ha okens () {
;

Syslem.oul.println(st.nextloken());

Code

Now, let us have an example so that you can find its utility. And this is one program which we
want to give a demo. It is called the string parsing demo. And as this string tokenizer is defined

in util, so we have to import this method there, means, class there.

Now, here we create a string tokenizer object for this string as what is called the input. And here,
is a delimiter that what is a delimiter means that, which basically will distinguish from one string

to another string.

That means in this string as the delimiter this one. So this is the one token, this is another token.
And this is another token. Now, here you just took a parsing the string returning the token and

then printing the token, and this will give this one.

(Refer Slide Time: 05:15)

= Example 59.1 : Simple StringTokenizer parsing

Now, this program, if you modify and with say new delimiter defining say, here. And then it will
print the whole thing because it does not have these delimiter. So it will print this one. So
delimiter indicates that okay, how you can parse string and which is basically identification or
marking that this basically starts a new token and from the previous token. So this is a concept.

Now, let us first discuss on more examples so that we can understand this concept better.

(Refer Slide Time: 05:46)

== Example 59.2 : StringTokenizer parsing with key

Example that creates a StringTokenizer to parse "key=value" pairs. Consecutive sets of "key=value" pairs are separated by a semicolon.

Code

—t 0 T
authar DS

publsher NPTEL
copyright 2020

title Java: Data SlructuresJ

Output

And here is the next illustration that you can think about. Here we are giving a new another
delimiter. These are second demo we can say, so demo two. And here, we create a new object

and this is basically a string we can. This is the input string we can think about it.

And in this input string, as we can see, the delimiter is particularly defined. Here, this and this
together form the delimiter. How we can do it? We can mention this one. And this is a input
string. And this is basically the string tokenizer that we have created. This is the input string and
this is a delimiter. That means here, the token in between the two, what is called the elements, |

will be considered the token.

So, as you see, title here, for example, if we parse this string as a writing this, this is a basically
parser here. We see the check that weather token exist or not. And then it basically next token,
and then return the next token, and then print the token value. So here, this basically, this is the

first print that it basically gives you.

Here this is basically as we see title. And for this string, this is basically the token that it return
and for this string, this is basically the another token as we can see because this is the token
within this delimiter at it is possible. And this is another token that we can see. And this is a
another token, as you can get it. So here, basically, all these are the string and we apply the

tokenizer this one.

Now, if you remove all these things and then create another completely one sting like, so this if
you and if you remove it, you can check the program, and then you can write it and then again
that way. And then if you do it, it will basically give you the same program like but here the
token is you this one only. But for this spot only, it is showing the result. But if you combine
both the things you can check.

So you can see, removing only or making only one string, but giving the delimiter and you run
the program, how it runs and how it produces output that you can check it. So this you can try
and then you can see the difference, how the two things are working better.

(Refer Slide Time: 08:29)

Date Utility

_ 4

== Date class

+ The Date class encapsulates the current date and time. 1

+ When Java 1.1 was released, many of the functions carried out by the original Date class
were moved into the Calendar and DateFormat classes, and as a result, many of the original
1.0 Date methods were deprecated.

+ Since the deprecated 1.0 methods should not be used for new code, they are nét described
here,

Now, let us consider another utility and it is called the date. Date is very important. Now, given a
date, you have to find another date; given a data, you have to find the month; given a date, you
have to find a day. So many utilities are required. And in many application development, these
things are obvious things and you have to apply it. So java provide, java developer that provided

one utility in the form of a date class. So it has a versatile application.

(Refer Slide Time: 09:02)

__‘

<= (Constructors of Date class

Constructor Description

Date() Allocates a Date object and initializes it so that it represents the time at which it was
— allocated. measured to the nearest millisecond

(| Date (Allocates a Date object and initializes it to represent the specified number of

milliseconds since the standard base time known as "the epoch”. namely January 1.
1970, 00:00:00 GMT.

There are many methods, many operations that you can do it. And whatever the operations are
there for which the method is already defined, you have to call this. I will try to give some
illustration of some call of some methods for your purpose.

Anyway, date object can be created, these basically return the current date. And the date long
date, it basically gives you the date object initialized to represent. So if you initialize the date
object with the current date, then you can pass the current date here. And then this date is
basically the current date will be created, otherwise, it will create the default date that is there,
the system date, actually.

(Refer Slide Time: 09:38)

__'

== Method of Date class
Method Description

after (Date when) Tests if thus date is after the specified date

before (Date when) Tests of this date 1s before the specified date.

clone() Retum a copy of this object

compareTo (Date anothorDat. | [ompares two Dates for ordering

)

equals (Object ubi) Compares two dates for equality.

from(Instant inslanl) ﬁlbmms an instance of Date from an Instant object

getTime () ?t'l'um the number of milliscconds since January 1. 1970, 00:00:00 GM1
rdpresented by this Date object

hashCode () Retums a hash code value for this objeet.

setTime (long time) Sqs this Date objeet to represent a pomt in tme that 1s tme millisceonds
affer January 1. 1970 00:00:00 GMT

toInstant () Cdnverts this Date object to an Instant

tostring() Converts this Date object to a String of the form

Now, these are the date and there are many methods which are required. Whether two dates are
same, whether difference between the two dates, whether the month, year and date of a particular
date. And then hash code of a date, and then setting a time for a date. | mean, changing the time

for a date.

So many utilities that you can apply and all these are the self-explanatory, you can just follow
this and better idea will be that you can write your program, and then call if method in your
program and check the output how it is giving. That is a very simple way that you can learn
better.

So the description of each method is given here for your understanding. And here set time, this
basically to represent a point time, that in the millisecond after January 1. | will give an
explanation so that you can understand this concept better.

(Refer Slide Time: 10:25)

== Example 59.3 : Getting the current date and time

To obtain the date and time in terms of milliseconds, in its default string representation as returned by toString()

import java.util.vate;
asz Dale

Code

un Mar 15 08:13:24 CST 2020

ds since Jan. 1, 1970 GMT & 13885963

Output

Here is an example that you can follow. I will not be able to give much more illustration because
the time is not so permissible to do that. Anyway, | will give just an idea so that you can

understand about it.

Now, let us consider this program. And we are using date class, so we have to import it and these
are date demo. So we create a date, new date. So this is a default date that you create is basically

the system date that will basically create it.

And then if you print it, and you can print that this is the date it is created. So this basically,
sorry, this is basically give you the current date, current date means system date, yes. So what are

the system date? It basically store it this one.

Now, get time; now, this basically, it tell that what is the time that we have elapsed. Now, this
get time method if we call this, then it will basically calculate the current time. That is basically
the default time that is stored there in a java field. So this is basically the time. It will basically

calculate the time elapsed from this date to till time.

So this basically it says that this is the time that elapsed from that date to this one. So this is the
idea that you can call, and then similarly you can extend this program, calling the different
method and practice it, and you will be able to understand how the different method work.

(Refer Slide Time: 11:52)

__'

== (alendar class

+ The abstract Calendar class provides a set of methods that allows you to
convert a time in milliseconds to a number of useful components.

orR)ation that can be provided are

* It is intended that sub classes of Calendar will provide the specific functionality to
interpret time information according to their own rules.

+ An example of such a sub class is GregorianCalendar.

Note:
1DK 8 defines a new date and time AP in java.time, which new applications may want to
employ.

Now, let us come to the calendar. Calendar is another important one utility, which you can
consider to develop many application. So you can see the calendar is also another important data.
Now, the calendar can provide many information which we have mentioned, including time-

related year, month, days; everything is there. And so the calendar class has been planned so that

you can maintain one calendar in your program and you can have certain support related to the

calendar activities.

Now, so there is basically the popular this is a normal calendar we usually follow, it is called the
Gregorian calendar. There are many other calendar also can the java developer can support. Even
a programmer can define their own calendar also depending on, for example, you can maintain
your own calendar according to your own rituals or own locales that also you can do it. So these
are the things it is possible. And now, let us have some examples so that how the calendar object

can be created.

(Refer Slide Time: 12:56)

<= Method of Calendar class

Method Description
add(inl field, inl amount) Adds or subtracts the specificd amount of time to the given calendar ficld, bascd on the
alendar's rules
after (Object when) Retums whether this Calendar represents a time after the time represented by the
pecified Object

before (Object when) [Returns whether this Calendar represents a time before the time represented by the
specified Object

clear() Sets all the calendar field values and the time value (millisecond offset from the Epoch)
of this Calendar undefined

clear(int ticld) Scts the given calendar field value and the tme value (millisccond offsct from the Epoch)
of this Calendar undefined T

clone() Creates and retums a copy of this object
S

compareTo (Calendar anulherCalendar) [|Comparcs the time valucs (millisccond offscts from the Epoch) represented by

wo Calendar objects.

complete () f\nlls in any unset fields in the calendar fields
computeFields () dnu\'ens the current millisecond time value time to calendar field values in ficlds|
o

Now, there are many methods are declared in the calendar class, which | have declared here.
These basically add, we can add some time or date or month into a particular calendar or a
calendar can be reinitialize also. And also, you can clear, remove a certain values in the calendar.
So it basically delete a particular calendar. A copy, calendar can be copied to another calendar

also.

So there are many methods which you can read all the description and you can understand. And
then there are few terminology that you can consider. Epoch will be discussed when we will

consider time zone then you will be able to understand about it.

(Refer Slide Time: 13:39)

== Method of Calendar class

1
i

Method

Description

computetine ()

Converts the current calendar ficld values i fields] to the millisceond tme value time

equals (Object obj)

Compares this Calendar to the specitied Object

get (inl [ield)

Returns the value of the given calendar field

getActualMaximum(int. ticd)

Retums the maximum value that the specified calendr field could have, given the ime
value of this Calendar

getActualMinimum(int ticld)

Retums the mimmun value that the speeified calendar ficld could have, given the tme
value of this Calendar.

getAvailablelocales ()

Returns an array of all locales for which the getinstance methods of this class can relum

locahzed mstances

getbisplayName (inl [ield,
int style, Locale lucale)

Retums the string representation of the calendar field valuc in the given style and locale

getDisplayNames (int ticld,
int stylc, Locale locale)

Returns a Map contauung all names of the calendar field wn the given style and locale ay
their corresponding field values

getFirstbayofWeek ()

Gts what the first day of the week 1s; ¢, SUNDAY m the 1S, MONDAY France

getGreatestMinimum(int. ticld)

Retums the highest minimum value for the given calendar ficld of this Calendagam=

ol
== Method of Calendar class .
Method Description
getinstance () Gets a calendar using the default time zone and locale.
getInstance (Locale alocalc) Giets a calendar using the default time zone and specified locale
getInstance (TimeZone 7onc) Gels a calendar using the spectfied tme zone and default locale |
getInstance (TimezZone cune, Locale | Giels acalendar with the specified tme zonc ind locale
Locale)
getleastMaximum(int. ticid) Returns the lowest maximum value for the given calendar field of this Calendar instance
getMaximum(int. ticid) Retums the maximum vilue for the given calendar field of this Calendar mstance S

getMinimalDaysInFirstWeek ()

Gets what the mimmal days required i the first week of the year are;

getMinimum (inl [ield)

Returns the minimum value for the given calendar field of this Calendar mstance

Returns a Date object representing this Calendar's time value (millisecond offset from

the Epoch”).

getTime ()
getTimeInMillis ()

Returns this Calendar's time value in milliseconds

setWeekDate (int weckYoar,

b weekOfYear, 1nl dayOLweek)

Sets the date of this Calendar with the the given date specificrs - week year, weeke2

and day of week ‘.\ A

4
|

<= Method of Calendar class
Method Description

set(int ticld, int valne) Sets the gven calendar ficld (o the given value

set (inl year, inL month, inb date) | Scisthe values for the calendar fickds YEAR, MONTH. and DAY OF MONTH

set (inl year, il month, inl dale, | Setsthe values for the calendar
int hourOfbay, inl minule) fields YEAR, MONTIL, DAY_OF_ MONTIL IIOUR_OF_DAY, and MINUTE

set(int year, int month, int date, | Setsthe values for the fickls YEAR, MONTH, DAY OF MONTH, HOUR, MINUTE

int hourOthay, int minute, and SECOND.

int second)

getPirstDayofNeek (Lul valus) Sets what the first day of the week 1s; ¢ g, SUNDAY in the 1S, MONDAY in France
setLenient (bovlean lenient) Specifies whether or not date/time interpretation is to be lenient

setMinimalDaysInFirstieek (int. valuc | Sets what the minmal days required in the first week of the year are:
)

setTime (Date datc) Scts this Calendar's tme with the given Date
setTimeInMillis (long milliz) Sets this Calendar's current time from the given long value ;
setTimezone (TimeZone valuw) Sets the time zone with the given time zone value. y

Now, let us see some, these are few more methods. There are a huge number of methods to deal
with calendars so that you can process any sort of calendars that have it. As we have listed many
calendars methods related to it.

(Refer Slide Time: 13:54)

“= Fields of Date class '
Fields Fields Fields Fields Fields
ALL STYLES DST_OFFSET JULY SATURDAY WEEK OF YEAR
M 1) e st R
) FEBRUARY LONG SEPTEMBER ZOKE_OFFSET
APRIL FIELD COUNT MARCH SHORT 1)
arefjoldsset folds 0y SONDAY
AUGUST ERIDAY NILLISECOND THURSOAY
DATE HOUR MINUTE tame
QAY_OF WEEK HOUR_OF DAY HONDAY TUESOAY
DAY_OF_WEEK_IN_MONTH isSet MONTH ECIMBER
DAY_O)‘_YMR 1aTimeSet NOVEMBER WEDNESDAY

These are the different fields also defined in the calendar. So it is a very vast concept actually. It

takes some time to understand everything in details.

(Refer Slide Time: 14:02)

<= Example 59.4 : Demonstration of several calendar methods

import java.util.Calendar;
ass Cale {

Now, here is the different, this is an example that you can see. It is very simple example so that
you can understand how the demo of a calendar can be. And this is the calendar demo. Now,
first, we will create a calendar and this calendar will be initialized with the current date and time

in the default locale and time zone.

Now here, default locale means, it is a standard US locale and the time zone is basically standard
time that is your system is running according to your current settings. Now, this basically you see
how we can create a calendar object. So calendar and you can note that calendar does not have
its own any constructor. So we have to use the factory method those are define those can be used

there.

So as a get instance for a calendar object is created, and once this calendar is created then we will
be able to print the date, time, here is a month, hour, and seconds. So this is okay if we continue

this program, there are few more statements that you can think about.

(Refer Slide Time: 15:11)

<= Example 59.4 : Demonstration of several calendar methods

Code

'g;l : 12939 UTC 2020
= Time: 11:29:39
QO | Updated time: 10:29:22

So this is in continuation of previous one. The setting also can be done; set. That means we can
change the hour by 10, 29, 22. Now, the output that you can get, so this is the earlier calendar
that we have created. This basically is the calendar date that can be created; time also, it is
basically the previous one. And updated time, after setting time, as you see, this is 11, and then

10, 29 and 22, we have set it. So we can change the setting of the calendar.

So this way you can set the calendar both day, time, month, everything that is related to this
calendar you can do. That method is basically get, set, all these methods by which you can have

the new calendar.

(Refer Slide Time: 16:01)

<= Example 59.5 : Demonstration of several calendar methods

Code

;15 days ago: Mon Mar 01 11:10:57 UTC 202
‘months Tater: Mon July 10 2020

2yearslater: Sun Mar 13 11:10:57 UTC 2022

1

So this is a simple example of calendar. There is another example here. We can see how we can
create your own calendar also, that is the one idea you can do, or you can set a calendar also. So
this is the one class, demo class we can say. We create a calendar object get instance and then we
change the setting of the calendar. So it will basically add. We are adding and get time, get time,

get time.

So this actually, this is basically the time. This basically, if you set it minus 15 means, is
basically say that 15 days ago and it basically give the value it is there. And here again, 4 months

later. So it basically set by 4. So it is a 4 months later. If you year to set, then 2 years later.

So this way you can reset the calendar from the current calendar or any instance of calendar to
any other calendar. So in many business applications, it is required to reset the calendar and

accordingly you use it accordingly to do certain calculation that can be useful for that.

(Refer Slide Time: 17:12)

== G@regorianCalendar class

+ GregorianCalendar is a concrete implementation of a Calendar that implements the

normal Gregorian calendar with which you are familiar.

+ The getinstance() method of Calendar will typically return a GregorianCalendar
initialized with the current date and time in the default locale and time zone.

+ GregorianCalendar defines two fields: AD and BC. These represent the two eras
defined by the Gregorian calendar. R

+ There are also several constructog ior GregorianCalendar objecty The default,

GregorianCalendar(), initializes the object with the current date and time in the
default locale and time zone. Three more constructors offer increasing levels of
specificity: +

Now, let us see some Gregorian calendar utility. It has the most versatile calendar and usually the
more common calendars. So it is basically, it implements the calendar. It is a one special type of
calendar object we can say. And it is more familiar as we use it, we are accustomed to this

calendar.

Here the get instance method will typically return the Gregorian calendar that we have already
studied about it. And it also define two fields AD and BC to represent two different time versions

actually. And there are many constructors defined in Gregorian calendar objects, which we can

create to create your own object. And there is a default constructor also, which basically
initialize object with the current date and time.

Now, let us see some examples so that we can understand this concept better.

(Refer Slide Time: 18:06)

== Constructors of GregorianCalendar class

Constructor Description

GregorianCalendar () Constructs a default GregorianCalendar using the current time in the default time
pone with the default locale.

GregorianCalendar (int. ycar, int month, |(ongiucts a GregorianCalendar with the given date set in the default time zone with

int. dayOtMonth) the default locale.

GregorianCalendar (inl year, inl monlh, | Constructs a GregorianCalendar with the given date and time set for the default time
inl dayOfMonth, int hourOflay, one with the default locale.

int minute)

GregorianCalendar (int. year, int month, | fonstructs a GregorianCalendar with the given date and time set for the default time

int. dayOtMonth, int hourOtDay, ne with the default locale.
10l minule, inl second)

GregorianCalendar (Locale alocalc) onstructs a GregorianCalendar based on the current time in the default time zone
wfith the given locale.

GregorianCalendar (Timezone iune) onstructs a GregorianCalendar based on the current time in the given time zone
With the default locale

GregorianCalendar (TimeZone cune, Local | (lonstructs a GregorianCalendar based on the current time in the given time /onc

e alocale) with the given locale

And here is a demo. These are the different methods which are defined for the Gregorian
calendar. These are constructors, the different constructor, how we can create the different

objects of this type is mentioned here?

(Refer Slide Time: 18:29)

<= Example 59.6 : Getting the current date and time

And this is an example that you can think about; the demo of Gregorian calendar. And here, we
just initialize the month of a calendar by this string, we can say. Otherwise, different other

symbols also we can use to represent the different month also you can possible.

And here you see, we create a Gregorian calendar objects by calling this is the default
constructors. Now, the date of the Gregorian calendar can be printed using this format. You can
see the month, date, and year; so this way, the date can be created, printed. Then time also can be
printed hour, minutes, and seconds. These are the form of a string we can print. Now, here is the

output that you can get it for this program.

(Refer Slide Time: 19:21)

== Example 59.6 : Getting the current date and time

Code

Date: Jan 12020
Time: 1:45:5 j}

Output

The current year is a leap year

Writing some print statement here, the output is basically as you see this is the date, this is the
time, the current year is leap year or not. This is the one method that is declared in Gregorian
calendar class. And then the method is leap year to decide whether particular year is leap year or

not, it automatically check it.

So these are the different utility, there are many utilities are defined there and which you can
practice and exercise and then you can check how they works for you. So that is basically I am
giving highlights about the different class. But for the details of this class declaration, you can

have the details practice then you can find it.

(Refer Slide Time: 20:00)

__'

<= TimeZone class

+ Another time-related class is TimeZone.

* The abstract TimeZone class allows you to work with time zone offsets from Wﬂ,

also referred to as Coordinated Universal Time (UTC).

* It also computes daylight saving ti i ies the default constructor.

And now, time zone is one important aspect. So for the utilities concerned, as you know, our
globe is divided into 24 equal parts. And this is basically one longitudinal starting from the
Greenwich for which the zero-hours started. And every 124th of the part is basically one hour

difference. And this way the time zone can be calculated.

We are in India having some time zone. There are different time zone have their unique name,
and everything is defined in the class time zone so that you can understand and accordingly, you

can set time, change the time, depending on this thing. Probably, in your mobile phone, you can

set time zone or reset some time zone; or you can, you are in a particular time zone, if you want
to know the time of other time zone that all those utilities is developed. So those things, you can
do it.

And time zone is basically follows the concept, it is called Greenwich Mean Time, that is the
zero meantime, you can say for which there. And then, all other time which with respect to this
time actually will be created. And then they are basically expressed UTC. UTC is called the
coordinated universal time. Now, so these are the idea that you can use it. Now, let us see the

different constructor and methods which are defined there.

(Refer Slide Time: 21:26)

<= Method of TimeZone class

Method Description

¢clone() Creates a copy of this TimeZone.

getAvailablelIDs () Grets all the avalable 11s supported

getAvailableIDs (int. rawdffsct) Gets the avanlable 1Ds according to the given time zone offsct in milliscconds

getDefault() Gets the default TimeZone for this host

getDisplayName () Retums a long standard time name of this TimeZone suitable for presentation to the
user in the default locale

getDisplayName (boolean daylight, Retums a name in the specified style of this TimeZone suitable for presentation to

inL style) the user in the default locale.

getDisplayName (hoolcan daylight, Returns a name in the specified style of this TimeZone suitable for presentation to

int style, Locale localc) the user in the specified locale

getDisplayName (Locale |ocalc) Retumns a long standard tme name of this TimeZone suitable for presentation 1o the
wser i the specified locale

getDSTSavings () Returns the amount of tme to be added to local standard time to get local wall
clock tme

getiD() Gets the 1) of this ime 7o

So in the time zone class, several methods are defined, which | have listed here. And the
discussion of the different methods is given there. And it basically tell that how the time zone

object can be manipulated by the different method.

For example, say get ID method, it basically gives the ID of a time zone. Every time zone has its
own ID that is defined in the time zone class. It can return it and this can be utilized to have
certain inference in your program actually. So the different get display name is basically a name

of a time zone, every time zone has its own name and everything.

So you can set your time zone also. If you are from a current time zone, if you want to move into

other time zone that, also you can. So this is related to time zone you can do many other

manipulations that is mentioned by that is that can be done by different methods, which is listed
here.

(Refer Slide Time: 22:22)

_ .
g
¥

= SimpleTimeZone class

* The SimpleTimeZone class is a convenient sub class of TimeZone,

* Itimplements TimeZone's abstract methods and allows you to work with time
zones for a Gregorian calendar,

* |t also computes daylight saving time.

Now, I will just discuss about one simple time zone utility that is interesting to learn.

(Refer Slide Time: 22:27)

<= Constructor of SimpleTimeZone class

Constructor Description
SimpleTimeZone (inl rawO[[sel, String 1b) Constructs a SimpleTimeZone with the given base time zone offset from
GMT and time zone ID with no daylight saving time schedule:
simpleTimeZone (inL rawO[[sel, String 1D, Constructs a SimpleTimeZone with the given basc time zone offset from

GMT. time zonc 1), and rules for starting and ending the dayhght tme
ok, int startTime,
int cndMo nt endDay, int cndDayOticek,

inl endline)

SimpleTimeZone (int. raw0ttsct, String TN, Constructs a SimpleTimeZone with the given base time zone offset from
int startMonth, int startDay, GMT. time zone ID, and rules for starting and ending the daylight time
inl slaclbayOfveek, inl slarllime,

int endDayOfweek,

inl endMonth, inl
int cndTime, int ds

SimpleTimezone (inl rawO[[sel, String 1D, Constructs a SimpleTimeZone with the given basc time zone oflsct fro
inl starlMonth, int st
int startDay

Lay, GMT. tme 7onc 11), and rules for starting and ending the daylight tmy
, int startTime,

int startTime int. endMonth, int endDay,

inl endbayOfweek, inl endlime, inl endlimeMode,

1ol dsiSavings)

So there are many methods also defined there. These are the constructor, which is there. With
this constructor, you will be able to create the time zone. They are called simple time zone. The

time zone is basically more utilised, this one and it has many other ideas about.

So that with respect to a current time zone, if you want to add it or you can, to move into the
sometime zone, you can differ it all those things, you will be able to do that. Now, there are

many constructor, these are constructors.

(Refer Slide Time: 23:00)

“= Fields of SimpleTimeZone class

Field Description
STANDARD TIME Constant for a mode of start or end time specitied as standard time
UTC_TIME Constant for a mode of start or end tune specitied as UTC
WALL_TIME Constant for mode of start or end time specified as wall clock time

So there are many methods also defined. These are the few fields also defined there.

(Refer Slide Time: 23:04)

== Method of SimpleTimeZone class

Method Description
clone() J Retumns a clone of this SimpleTimeZone instance
equals (Object obj) Comparcs the equality of two Simple TimeZone objects
getDSTsavings () Retums the amount of tme m milliscconds that the clock 1s advanced durng

dayhight saving tme.

getoffset (1nl era, inl year, int month, || Retums the differc

ce m milhsceonds between local time and UTC, taking mlo

int day, inl dayOfweek, int millis) account both the raw offset and the efleet of dayhght saving. for the speafied date
and ime
toffset (lung dale) Returns the offset of this time zone from UTC at the given time.

getRawoffset () l Gets the GMT offset for this time zone.

hashCode () Generates the hash code for the SimpleDateFormat object
hasSameRules (TimeZone othcr) Returns truc 1f this 7onc has the same rules and offsct as another zone
inDaylightTime (Date datc) Queries 1 the given date 1s in daylight saving time
observesDaylightTime () Retums true if this SimpleTimeZone observes Daylight Saving Time.

== Method of SimpleTimeZone class

Method Description

Dur ingnaT) Sets the amount of tune i millsseconds that the clock s advanced duning
daylight saving tc.

etDSTSavings (inl mi i

setbndRule (int cnduonth, int endvay, int endrime) Sets the daylight saving tune ead rule to a fixed date within a month

setBndRule (int cnduonth, int cnduay, int enduayOfweek, | Sets the deylight saving time end rule

inl andTime)

setEndRule (10l endMonlh, il endfay, il endfayOfWeek, | Seis the deylight saving time end rule o s weekday before or afler the
int cndtime, boolsan after) guven date withun a month, ¢ 2., the first Monday on or after the $th
setRavoffset (il of [uelMillis) Sets he bas tine 7one offset to GMT.

setStartRule(inl tlariMonlh, 1ol slarihay, Sets the daylipht saving time start rule to a fixed date within a month
int startlime)

setStartRule(int startMonth, int startiay, Sets the daylipht saving time stait rule.

inl, sLarlDay0(Wauk, inl slarlTime)

setstartRule(int startMonth, int startiay, Sets the dayhght saving fime star rule o 4 weekday before or afler the
inl GlarlDayO(Wuek, inl slarlTime, boolean 4ller) fiven date withia a moath, & 2., the first Moaday oa or after the 8th
setstartyear(int year) Scts he dayhght savang e startmg year

toString() Retums o sring representation of thix e 2one
useDaylightTime () Quertes if this tune 200e ses dayliaht saving tune,)

And here are many methods which you can use for the simple time zone to manipulate it. The
discussion it is given there. You can check all these statement, these are the self-explanatory,
easy to understand by which you can just manipulate the time zone of whatever the way that you

want to do it. There are many more methods that is there.

(Refer Slide Time: 23:29)

<= Locale class

The Locale class is instantiated to produce objects that describe a geographical
or cultural region.

It is one of several classes that provide you with the ability to write programs
that can execute in different international environments.

The formats used to display dates, times, and numbers are different in various
regions.

Internationalization is a large topic that is beyond the scope of this course.
However, many programs will only need to deal with its basics, which include
setting the current locale.

Now, let us see the locale. Locale is basically, as | told you, the java provides Unicode format,
and it is one important utilization is that you can express your, | mean text according to the
character set of certain locales. The usual locales that we usually follow is the US locale. But
there are many other locales that is there, for example, expressing some text in Chinese, or

France, or Romanian language or Hindi, everything, you can do it.

So these kind of things is possible by means of this utility class called the locale. So it basically,

the idea of this locale class is to produce object that describes geographical or cultural region and

then locale also can be used to represent many other | mean, user understandable form. So it is

one aspects by which java makes the programming language a little bit internationalized actually.

(Refer Slide Time: 24:38)

_ 4

<= Fields of Locale class

Fields Fields Fields Fields

GANADA JARAN FRANCE PRIVATE USE_EXTENSION

CANADA_FRENCH JAPANESE FRENCH ROOT

CHINA KOREA GLRMAN SIMPLIFIED CHINESE

CHINESE HOREAN GERMARY TAIRAN

ENGLISH BRC ITALIAX TRADITIONAL CHINESE

UNICODE_LOCALE EXTENSION [US 171y oK

Now, there are many locales that it can support, as | have mentioned here. They are basically is a
Canadian locale, Japanese locale, Italian locale, UK locale, US locale. This is the Republic China

locale and so many other English locale. So there are many other different locales that you can.

So you can use a particular locale with which you want to print your text and then accordingly it
will print. So in the print In statement or print f statement here, the locale can be specified. For
example, locale dot us, you can use it then it basically use statement locale dot PRC, for

example; it will print in Chinese the text that you want to display.

Automatically, it will convert in a specification of a particular character set and then print it. So

these are versatility that you can have it and you can check it writing program.

(Refer Slide Time: 25:30)

== Constructors of Locale class

Constructor Description
Locale(String languaye) Construct a locale trom a language code.
Locale (String lanquage, String counliy) Construct a locale from language and country. 1,

Locale (String language, String counlry, String variant) | Constructa locale from language, country and vanant

And there are many constructor that you can call for this locale class. Here is the different
constructors, and this is basically the language that you can specify which locale; US or UK. So
is a locale dot US, locale dot UK, locale dot Japan, these kind of things you can mention.

And then country also you can specify by giving the name and the locale also you can do it. So
this is in many ways the locale object can be created and then you can customize your output to
that purpose.

(Refer Slide Time: 26:03)

== Method of Locale class

Method Description
getDisplaylanquage (Locale inLuvale) | Returns a name for the locale's language that is appropriate for display to the user
getDisplayName () Returns a name for the locale that is appropriate for display to the user.
getDisplayName (Locale infocalc) Returns a name for the locale that 1s appropriate for display to the user
getDisplayScript () Returns a name for the the locale's senpt that 1s appropnate for display to the user.
getDisplayscript (Locale inlovale) Returns s name for the locale’s serpt that is appropriate for display to the user
getDisplayvariant () Returns a name for the locale’s variant code that is appropriate for display to the user

getDisplayvariant (Locale inLucale) Returns a name for the locale’s variant code that is appropriate for display to the user

getExtension (char key) Returns the extension (or private use) value associated with the specified key, ot null if
there 1s no extension associated with the key.

getExtensionKeys () Retumns the set of extension keys associated wath this locale, or the emply setif 1t ha

10 exiensions

getI503Country () Retumns three-letter abbreviation for this locale's country

<= Method of Locale class

Method

Description

clone()

Ovemdes Cloneable

equals (Object obj)

Retuns true if this Locale 15 equal to another object.

forlanquageTagq (String languageTag)

Retumns a locale for the specified IETF BCP 47 language tag string

getAvailableLocales () Returns an amay of all istalled locales
getcountry () Retumns the country/region code for this locale, which should cither be the emply
string. an uppereasc IS0 3166 2-letter code, or a UN M.49 3-digit code:
etDefault () Gets the current value of the default locale for this instance of the Java Virtual

Machine

getDefault (Locale.Category calegury)

Gets the current value of the default locale for the specified Category for this instance
of the Java Virtual Machine

getDisplayCountry ()

Returns a name for the locale's country that 1s appropriate for display to the user

getDisplayCountry (Locale inTiocalc)

Retumns a name for the locale's country that is appropniate for display (o the user.

getDisplaylanquage ()

Returns a name for the locale’s kmguage that 1s appropnate for display (o the user.

adom . NPTEL

<= Method of Locale class

Method

Description

getIso3Lanquage ()

Returns a three-letter abbreviation of thus locale’s language.

getIsocountries ()

Returns a List of all 2-letter country codes defined in IS0 3166.

getISOLanguages ()

Returns a list of all 2-letter language codes defined in IS0 639

getlanguage ()

Retumns the language code of this Locale

getscript()

Retumns the scrpt for this locale. which should cither be the cmpty stang or an 1SO
15924 4-letter seript code

getUnicodeLocaleAttributes ()

Returns the set of unicode locale attributes associated with this locale. or the empty set
if it has no attributes.

getUnicodeLocaleKeys ()

Returns the set of Unicode locale keys defined by this locale, or the empty set if this
locale has none

getUnicodeLocaleType (String key)

Returns the Unicode locale type associated with the specified Unicode locale key for
ths locale

getVariant() Returns the variant code for this locale:
hashCode () Ovemde hashCode

NPTEL

<= Method of Locale class

Method Description
setDefault (Locale Cateqoxy calegury, | Setsthe default locale for the specified Category for this nstance of the Java Virrual
Locale newLocale) Machine
setDefault (Locale newlocals) Sets the default locale for this mstance of the Java Virtual Machine
tolanguageTagq () Retums a well-formed ICTT BCP 47 language tag representing this locale
tostring() Retums a strng representation of this 1.ocale object, consisting of language, country

varant, serpl. and extensions as below

So these are the different methods, | have listed few methods here, these are the methods by
which you can check that text comparison sort of thing. There are many more methods that you
can go through and then learn it. And then you can write your program by calling those methods

and creating objects and then you can see how they perform.

(Refer Slide Time: 26:30)

Currency Utility

- _1
— y

== Currency class

+ The Currency class encapsulates information about a
currency.

+ It defines no constructors.

Now, currency utility, as you know, different currency are known, and those currency needs to
be manipulated while you write the program. So the currency class is defined in java dot util

packet.

(Refer Slide Time: 26:43)

== Methods of Currency class

getInstance (Locale localc) Retums the Currency mstance for the country of the gven locale

Method Description
getAvailableCurrencies () Giets the sct of avalable currencics
getCurrencyCode () Giets the 180 4217 currency code of this currency
getDefaultFractionDigits () Gets the default number of fraction digits used with this currency.
getDisplayName () Gets the name that is suitable for displaying this currency for the default DISPLAY locale
getDisplayName (Locale lucale) I Gets the name that is suitablc for displaymg this currency for the speaified locale:
/

getInstance (String curren ,;Pm*,rﬁ Retumns the Currency mstance for the given currency code:

getNumericCode () Returns the IS0 4217 numeric code of this currency.
o 1() Gets the symbol of this currency for the default DISPLAY locale.
getsymbol (Locale locale) Grets the symbol of this currency for the speaified locale:

toString() Returns the IS0 4217 currency code of this currency

And there are many methods by which the currency can be manipulated. So these are the
different methods. And these are the description that you can check and then you can learn about
it.

(Refer Slide Time: 26:56)

== Example 59.7 : Currency method

Code

Symbol: $
Default fractional digits: 2

Output

And then there are certain, and this is a method, this is the simple program that you can check
that how this currency demo can work for some simple program. Here is a just we create a

currency object, c. And this is the currency get instance locale dot US.

Now, it basically, we are creating the currency in the US locale and then symbol, we can print it.
Now, get default fraction digits if in the US locale currency is there, there what is the fraction
digit that you can obtain. So this is basically, this is a symbol that basically used this locale dot

US currency and then fraction maximum allows two digits.

Now, here again, you can write that locale dot Japan and then get symbol. You can see Japan is
Yen currency symbol, you will get it. And then the digit maximum it can allow it can see the
digit that this currency allowed. For India it is basically digit 0. 1 paise, 2 paise, 3 paise like this
one or maybe like this. So you can check it. Now so, this is the currency, the class that is there

define in currency class.

(Refer Slide Time: 28:17)

+

» The Complete Reference, Herbert Schildt, 9™ Edition, Oracle Press

|
Wse.iitkgp.ac.in/ d ta/javads/index.html V

‘r\:ttps:/ /docs.oral:le.cum/javase/tutoria—lll

And more discussion that you can obtain from these. This is basically exhaustive discussion of
which you can find in this link. And these two; I have listed a few supplementary materials for
your understanding in details which I could not covered in this presentation. So this also you can

read so that you can get more details what | wanted to convey here.

Otherwise, if you want to learn in more details, then that is the link you can follow. There are
some discussion in this book also available, but no book is available where you can find detailed

discussion with more illustration. So that is the story of this one.

And that is why you can you can rely on some internet document also searching the document.
You can find many more examples relating this calendars, current zone or currency, and then
time zone and many more other utilities are there. So it require some, definitely, you have to put
some effort to understand this one. And then time, of course, then you will be able to understand

it. Thank you very much.

