Data Structures and Algorithms Using Java
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 58
String Buffer Class

So, String as it is an important concept. So string, Java developer has created this string
concept in a more detailed way and therefore, many more other class also have been defined.
So, we have studied one class called the string to process strings, there is another one class
the StringBuffer which has been added in a recent JDK and further there is another also class

dealing with string called a string builder.

(Refer Slide Time: 01:03)
N ———
@ (;) ‘ p

CONCEPTS COVERED

~ Concept of StringBuffer Class
» Constructors
» Methods

» Applications

StringBuilder class

» Comparison

So, in todays discussion includes the different ways the string can be manipulated other than
the class string. So, basically we will discuss about the new class which is called a
StringBuffer class and then few illustration with the StringBuffer class, then | will give an
idea about string builder class and then finally, I will conclude this discussion giving a
comparison among string, StringBuffer and StringBuilder class.

(Refer Slide Time: 01:34)
B @49

W)
i\ StringBuffer Class
)

So, let us first have out the concept fast about the StringBuffer. Now, | told you in our
previous discussion that string is immutable that means once a string object is created, it
cannot grow further that is why neither you cannot remove one character or you cannot add

another character into it.

So that is why the string is basically a constant in that sense whereas, a StringBuffer is
basically to address this limitation. Now, this means that if you declare a string with
StringBuffer, you will be able to enjoy all benefits that is available part the string as well as

some extra flexibility that you can enjoy with this class.

(Refer Slide Time: 02:26)

= StringBuffer class

* A String object is immutable, that =, oace you create an object, it cannot be
modified; for mxample, cannot insert, delete and append a character into it,

* On the other hand, an cbisct of the dass StringBuffer & like a String, but can be
modified

* At any pont in tme, it containg some partiogar sequence of characters, but the
length and content of the sequence can be changed through cartain method calls.

+ StringBuffer object is mutable sequence of characters

Nete
Every atring bofler hat a capeoty, As long a the length of the character sequence tontaned
the string buller does oot exceed the capaaty, it is not secesary (o slocate & new ntemal
bafler aray. I the internal buffer overfiows, & is automaticallty made Giger

Now, let us see what are the different ways the StringBuffer can support to the programmer is
better than the string class. So, a string is immutable this means that once you create an object
it cannot be modified you cannot change it. So, you cannot insert any character into it or you
cannot delete a character from it even you cannot add a character into it append whatever it is

there.

On the other hand, the StringBuffer is like a string, but it can be modified that means it is
mutable. So, we can say the StringBuffer object is a mutable sequence of characters and at
any point while you are processing a string, it can contains, a string can contains some
particular sequence of characters, but the length and the content of the sequence can be

changed by certain call up methods of the StringBuffer class.

So, this means that if the string is a static one object, then the StringBuffer can give you
dynamic objects which can grow or it can sync as per the requirement. So everything, every
StringBuffer object actually of type any string of type StringBuffer in fact can have one
buffer of it that is why it is name and that buffer is basically having certain capacity which
the default capacity as the time when you initialize with the length of the string that you have
initialized.

So, with that it is a default capacity, otherwise it will go. So, if you add one string with
another string. For example, a string s which say Java and another string say and you want to
add it into C plus-plus then s equals to s plus C plus-plus. So, initially it has the length say of
the same as Java’s length but later on it can expand and then it can accommodate another

string C plus-plus, so this way they are immutable.

So, internally that data can be allocated. So, there will be no concept of overflow

conservatives there. Whatever be the last string you want to add it will do it comfortably.

(Refer Slide Time: 04:51)

Constructors of StringBuffer class

— S—

Comtrutar ‘ Description
i sgiert [oty & sty i vt o chasstes 2 asd um(lx i
l e oG . ==
| chaxcrens

rrirgiettoaficrarfegrne 1] Crmebuata o virong Sullor Ot comtems e mns chrnbors m e secrkal

——

[Chaegens

. T
pon— L2 L, | | Cominatn o sy Sbar wiy mo chumsders o e specdhod mnud cipacty

rerin oty | Crmuiruats a vy Sl mtanbind b o womtartnd (e spdid g

Now, let us see how we can create object of type StringBuffer class. So, like String class,
there are many constructors are defined for this method also. So, here | have listed this is the
default constructors. So, it is basically with no characters in it and its initial capacity is 16.
So, this is the default capacity of the string by which it will create and you can create a string
object by giving a sequence of characters of type this one, so it is basically the string object

will be instantiated with input as an argument here.

Rather you can create a StringBuffer object specifying the initial capacity of dusting. So,

which can be anything other than 16 or any value it is there. Now here also you can create a

StringBuffer object with passing as an input to the stream. So, there is basically the idea is
that a string is immutable, how you can change it. So, best idea is that we can create a
StringBuffer object for that string do whatever it is there, this way a immutable string, if it is
there, we can make it changeable by means of StringBuffer class.

So, this is basically the another constructor which takes an input as a string object and then it
basically create a StringBuffer objects.

(Refer Slide Time: 06:28)

Example 58.1 : Creating StringBuffer objects

Now, let us illustrate with an example to understand how we can create the StringBuffer
objects. So, this is a simple program. So, we are giving a demonstration of StringBuffer
demo. So, here we create as we see StringBuffer, string object 1 is a StringBuffer type. So,
there are three objects and we can print the same thing as we have already done for the string

object.

So, it is doing and here also you see this is the concatenation that means everything is very
similar to the string, but it is basically with dynamically that it can grow. Now, here we just
we see, we create a StringBuffer object with a initial capacity say 16th we create another
string object passing string this one is the initial string that we can pass it to this.

Another string object is created and here we see, we call this constructor passing a string, this
is basically our usual string and concatenate with a StringBuffer object. So, that is also
possible. That means string object and StringBuffer object can be used inter-mixingly, no

issue and a string it is there.

Now, we can extend these things with an example that you can check it, here a string the
object that you have created and you can see it is possible a string this is equals to again a
string plus maybe a, b, c that is also possible, that means for the, if a string this is a string
object, if it is a StringBuffer object, then it is possible, but if it is a string object, then it is not
possible. So, you can understand about the difference between StringBuffer and string object.

So it is mutable actually, that is how you are able to perform this operation.

(Refer Slide Time: 08:36)

\\ Methods of StringBuffer

) ,

Mt I .
- S
38 4 wap b} | suh e I - U e
./\M \ | Mppersis e dmag nqeoncetston of B hvkor spaeei 3 vapanc
-;)'lj ’ | [ppends e mag repescrtaton o B i mmparecnt o1 e
b ——— +
sppuegicmri| rrr) Hopeah e dnag inperertaturg of fae ch3 sttt Sgeamat 2 (06 ey
.“'"‘Y har|) otr, | | Jppeves d stuay epemientatios of 3 ahorryy of the s ray wypssent b
jar i, (ox i | i ioace
appera f?.‘r.‘af.nr.‘f | | Dops e cpeciind Chaeqornce b s wogarsce
‘iv""’%’-“*?n# . | L,m s oimeguenie of the pertied ChuSapmuce 0 thn wpes e
[Fst safr, . "," {
append \‘W‘ I/ ‘.f‘vuhku,uq-nnﬁu::lﬁmmqumhu..r._vur
N L

Now, let us come to the discussion of methods of StringBuffer, what are the different
methods that we can think about like string class there are many methods all methods those
are there in string class also implemented in StringBuffer class. Further in addition to those

methods in string class that we have discussed it has its own methods.

Now, there are few methods which are basically new in this is basically append and its
argument can be any type as we can see, so append can be, so a string object can be append
with any string or any other data type, any other primitive data type as we see here. So, if we
call this append method for a StringBuffer object and then we can append to this string with

any primitive data type, automatically converting to a string type.

So, these are the statement that you can check it and you can run it and then small program
you can write calling this method for the StringBuffer object and then you can understand

how they are work, they work for you.

(Refer Slide Time: 09:44)

Methods of StringBuffer class

Method Description

Agpeads B vy reesentatnon of the feat st o the logesy

Sppuadyint 1 \ Appesh G disy epeintaoe of e f wgeed 1s 0o wnais
i

;lfszpi st dind 1 Appewh te viny tepneantatin of the bag agnaes ta fs gy

fiit’} ‘pea fr wiog ropoatdem of the Ot speecs

D i L T r T e pp—

perapieing 3t7) |
e 'L!”“i""' G| Agpeady tar e Sacaglintien b Gas wgmmse

appeiaCoteRaint |13L B | Axwad) e diey tegesentit g of thE] COTIUEE LHARSET 10 AN et
" . e S — — ——t—_ N

| |sapacity y Renana the crnent inpacty

_;:ur‘.m_i"p A o0 rodacy e ol b e chamr soqaoe

Now, there are a few more methods actually as | told you append method can be called for
many type of this one. So, here also append and a string that means a string object can be
appended to a StringBuffer object. StringBuffer object also can be appended to another
StringBuffer object and it basically from any point of the part of the string can be appended

to any other point.

So, here append a string representation of the, this as an argument that basically the integer
value and then capacity is basically if you want to know what is the current capacity of the
string. So, capacity and length are the two things, capacity means what is the maximum size
of the buffer, that the string can currently hold and the length is basically how many

characters at present the string is having.

So, that can be obtained and trimToSize, whatever the capacity it is there, it basically reduced

to the total size of the (())(10:42). So, this method can be used for minimizing the space also.

So, these are the few methods that we have discussed about there are many more methods

actually.

(Refer Slide Time: 10:54)

Methods of StringBuffer class

et oo '1

ChAEAE it Lodent R e char b i e sogmonos o i gecrhal b

ot U charmder (Urmonde ool eyt e il win

1
R the characner 1 Uacode code poust) bedice e speiifind mxdex

T Rtans the sadhes of Uit ode codo pows i O speridind 31 Dege of
L

Teranrs e Gauacws o o arbitosg of 330 wqeenir

Temonm b cist e vpoc find posnn nthes sopence

SESETeCApACitY Lail Batasiaal | Ppsmes dar the capaety n i lesst gl oo O spertied rasans

| EEEChaEe L suesia (humicion wc oqad e o oqunss o (b Aokt chacke
ant sackad, acf] 4 ey e

Frvupe 2 iay irpmeeny e dats i fyn wnprar

And few other methods that can be of interesting here | have mentioned character at, so this is
regarding indexing. So, CodePointAt it basically returns that Unicode value for a particular
string actually and starting from a given index. So this basically return the Unicode starting
from a given index of all the characters, those are the Unicode of all those characters.

So, now, delete is another method, here basically you can remove a portion of a string objects
I mean StringBuffer object starting from start and end both inclusive. Now delete character at
is a particular array character at a particular index position also can be removed.
ensureCapacity, if you want to increase the capacity then you can use this method and get
characters is basically gives the all characters starting from a particular point index to another

index.

So, this basically get all characters in between the two, it is just like a substring calculation
and this is a tostring as you have known that any object can be converted to the string. So,
this is the one method by which you can convert to string, automatically a string is

represented in the form of a string, but it can be called for any other type of data.

(Refer Slide Time: 12:16)

- - 2
Methods of StringBuffer class
Method Desorigtion
itdesof (ftzisg 21) Reruzn: e oades ki das ving of he fast sccavesce af
J =
wpecibnd abiting
—

l jodeame(Stzing #21, Bt € iades ki s g of the St scomtmcr of
. ‘. " ‘ ';;.—-; .Agmh_l whrtiag xtag nibe w::_iw 2y)
o (1Rt pEeacs 1Gan) siaths o . it eaen \

|| i & o x Tonrta th g vpecs nbenes of I b sspennt wie de

| .I e

| [Amsazt|int «Ifaw o Rl ul rarts e samag wpwosnisnes of fu e s wai b
J | e

| -
(|sssreiia ocise |] Bs 1] ALK it srmg esscoisbon of b ch s pgerce b b
| g

Emanrt|int feoewd ctur)r. lesems the shing epemscatitog o b ubanyy of the i iy
 witArt. St v\” / S 20 4 eqaeale

Lasest (it asen g ADartequens [esem the qperied (harSequence e84 fs besperce
Losert |Int Areieticr, CMTSequenc | [pam o viveqaect of B2 geiilnd ChuSapee 530 d

.0 4cs, dal emd) wyeer

Now, here is a few more method, this is the index off again. So, it basically to indicate for a
given string, what is that different index, so return the index within the string of the first
occurrence of the specified substring that means a substring is given and it is basically the

return the index of occurrence of that substring in a string for which this method is called.

So, there are different form of this index also there are, these are another form and insert is
basically if you want to insert a particular Boolean value into a particular point, then this
method can be called. Now, like Boolean many other type of primitive data also can be insert

in a particular position of the string.

So, it basically represents these are the different type of this one also and these are the many
methods who is basically related to insert by which the different way, the insertion operation

to a StringBuffer object can be carried out.

(Refer Slide Time: 13:26)
P 93—

“= Methods of StringBuffer class

Method Deurigbm
aflseticCode FOLETS | La) bty | onrme b wdor wilten Becsogemio that ol fron e
IES Sejuaalif{lsel gror mboy be ook Pt it ads pren
SERERERLIE- aLEy Replars e charncieni o o wobiliay of B equerse Wl claracty
Y e, Euring atr) & 0 pecdied Stiay
resarsel) Camees oy Chacier sequesce 1 be peplaced by B revesie od b
3 e
SETERALAL | InF VRN, cmIr TR | ke charmtar s g i mlen w it e
i setiaagenfint sswlengthi Sets (3¢ I o1 B e sepeae
sblemenon (0t otart, Nenams o v chsoctes soqanace €3t 0 o wlbwegence of
Nt tnx) e
(| aatring fink zbary) Tewans 0 000 Shung Gt Ceman & ainegurne of Charscieny
= capenly nmbaacd i fas chanin weqanr
| || sudsaxeieg |in 2bare I | Womrms 4 non Sinng it crmiemn 2 slvogmonod of Charakn
ooedy ortend i fo g

Now, there are a few more method again related to the Insert, there are various ways the
insertion can be done. The last index method is same as the string object that we have already
studied, it is for this StringBuffer class, their last index of string and form index also you can
same way we have already illustrated these basically return the length of the string is not that

capacity is basically total number of characters in the string that it is there. So that will return.

(Refer Slide Time: 13:59)
T 493

= Methods of StringBuffer class

Method Deunphon
afIsetisCodePoLnts | Lol .‘i-;_:,. Koarme ih mdox wiln feesopmrioc that i offaa from
| a0 Selaatiflzel) rormboy b ket 1wt ads pren
SER AR Maasty Beglaes 0 Churnciens b o whating of Bus seguerse ol (laractny
YL, Buring otr) = 0 pecdied Siiny
resarsel) Camies tos Chlacier saquesce 1 be peplaced by 1 sevesie od'de
2 gt
SEtCRALAL |10F 1Ra, CmIr TR | ke charmtar af e el mles w ot 1t
| [RSSEamgRTAT SRt Sets (3¢ g o e cutise sapacacs
[sublmpenon (it ctart, Nenams o v chsocte soqanace $3t 0 o wbsegeonce of
inT tnx) W
[|Batring int sEary) Tevane o o0 Saag Gt Coatan & Wiegurne of Chasin
- capently oot s s chaxiy eqaence
||| redeareiog har abart, Snr owUl | gourms non Sing et comiem 2 adogon of Rk
amoedy oot e e s

Now, there are a few more methods there are plenty of methods as | told. So, this is also
offsetbyCodePoint it is basically Unicode point value starting from an index for a particular
set of characters it can return. Replace is basically changing the sequence, reverse the usual
method if you want to make the things into a reverse order. So, if you call the method for a

StringBuffer, it automatically reverse and it is a mutable way reverse, reverse method is not
there for the class string that you can recall and set character at basically modifying, these are
the methods of modifying the StringBuffer object and these are the method for finding the

substring of a given StringBuffer objects.

(Refer Slide Time: 14:48)

So, there are many methods that is defined here, we have listed all methods, those are defined
for the StringBuffer class. Now let us take some time to illustrate few important aspects of
this illustration of the StringBuffer class. First we will see exactly how a StringBuffer object

can be modified.

(Refer Slide Time: 15:02)
B @493

© Modifying Strings

Modifying a string

* Because String objects are immutable, whenever you want to modify a

string, you must either copy it into a StringBuffer of StringBuilder
/| use & String method that constructs a new copy of the string with your
[| modifications complete,

+ On the other hand, you can modify StringBuffer object with the
methods, for example, append(), insert(), deletef), concat(), reverse(),
el

Now, this is one idea basically many programmer follows how a string object which is
basically immutable can be modified here. So, this is a clue that | have given as the string
objects are immutable whenever you want to modify a string, you can copy into a
StringBuffer or StringBuilder we will discuss StringBuffer shortly and then using the method

that is defined there, you can just simply modify.

So, this way a string which is immutable, can be somehow can be modified. And in the
StringBuffer method in order to modify string there are many methods which are defined,
which we have already studied and let us have some illustration of some methods towards the
modification of StringBuffer objects.

(Refer Slide Time: 15:59)

Example 58.2: Modifying strings

~ode

Dt Sttucture Cos

Data S‘.'lll\l'.E"lE“
Data Svixtise weh oy
T s

utput

O

|||||

So, here is an example, this example this program to demo the modification of string objects
and here we have created a string objects and these of type StringBuffer as you see. Now, this
is the append method we can call, you can understand what it returns. So, as it is see this is

output that it will give because it will append and then insert 15.

So, it basically takes .append now, it content this one and then insert 15 with so, it basically
insert in this string at this position the another part of the string, which passed as an argument
will be inserted as we see this basically gives the output. Now replace this one, so 20 to 23

possibly, this is basically 20 to 23. So, this will be replaced by this one.

So, it basically say that, this is the part of the substring which will be replaced between this
portion by the new string, it is this one. So, the string will be expanded as required and then it
basically modified this one. Delete 14 to 19, you can understand what is the output that it will
give it, so it will basically remove the character position from 14 to 19 and it will print here.
So that print you can check it is okay, if you give a system.out.printin text then it basically

give you after the modification, the output it is there.

(Refer Slide Time: 17:30)

Example 58.2: Modifying strings

~ode

Date Satuctuve (oo
Date Sucture with Cos
Dita Satactues weh v

Output

Anyway so you can understand then how if you call, if you create, for example in (())(17:34)
of this as a simple string and you can call this method you see this will throw a compile time
exception error you will not able to do that, because it will check it there. Anyway, so these
are the program that you can check and then hope you have understood the difference
between string and then StringBuffer there are a few more aspects are there, which is

interesting to learn about the string manipulation and using the StringBuffer class.

(Refer Slide Time: 18:01)

Example 58.3 : The reversing a string

twye e () ThS i 0sed to reverse the whole string

So, this is a reverse method which is also not possible for that class string, but it is possible

for the StringBuffer. So, here we create a StringBuffer object as it is there and then call the

reverse method then it basically print the string. So, you can see this basically modified by

storing in the reverse order as we see this is the output that you can get for this program.

So, this is basically the way that the StringBuffer objects can allow to modify the string. Then
concatenation is one of the important, concatenation although it is possible for the class string
but it always concatenate to a new string actually, but in case of the StringBuffer, it basically
concatenate to the same string. So, string will go automatically as you want to have it.

(Refer Slide Time: 18:34)

String merging: concat()

* You can concatenate two strings using concatf |, shown here;
ring concal dSteing sle)d
* This method creates 3 new object that contains the smveking string with the contents of st

appended to the end. concat(| performs the same function as 4. For example,

foana®y

¢+ You can do the same better wah StringBufler, in fact

=

Now here is the few usual concatenation method that you can done, that you can do using the
string class object of string class string like as you see, these are the different there are concat

method is also possible, but it returns the new string as you can see, this method is different

than the StringBuffer method that it can allow you. So as we see here for the StringBuffer, if

sl is a string object of type StringBuffer then you can do it.

But if these are the string, then you cannot do it, as this is not mutable for the string that is
why. So in this case, you will not be able to do, but if you define them, sl s2 as a
StringBuffer, you will be able to do that. So, whatever you can do is in string one and you can
declare StringBuffer for them. Also, you will be able to do that. In addition to this, you will

be able to do that also.

(Refer Slide Time: 19:54)
¢ U

Example 58.3: Merging of strings with String and StringBuffer methods

Now here are few example that is very interesting to observe it. So this is a concatenation and
we are doing concatenation with string object, so it is there and here basically go on
concatenating it basically (())(20:07) we call it concatenate return it, but here as we call this
concatenate method, this concatenate method is return the concatenated value into the string.
So, this string will automatically go by each time in NPTEL string is added and then it 10000
time the string will be added.

But here this is only NPTEL string will be added to this Java and then new string will be
created this is a different output you can check the print statement here and if you give the
print statement here, then you can understand how the result will be obtained. Now, let us see

the difference between the two concatenate method that is there in string and string

(0)(20:47).

(Refer Slide Time: 20:49)

Example 58.3: Merging strings of String method

A Al i i sanidieant] sa
R R T R
! w0 aab Lo 1 ®sime Lok b
v
° > atenlrinattillss
Q Y\ Vine -,
o 4 :f :
| e P LA et
sanllaf

Tiena tabin 9y Concating weth Snng. 578

Tt b &y Corcating ot eyl Ors

Output

|||||

Now, here is that in order to understand the difference, we can write this program and then
you can check it. So, here this is the main class we are calling the two methods that we have
declared and now, we want to check that how much time that is required for the first
concatenation and then, the second concatenation, the second concatenation namely with

StringBuffer class and the first concatenation namely with string class.

So, the two methods are called and time we just calculate, this is one method by which the
time can be calculated. So, it is defined in java dot lang. So, the start time system dot these
are current time milliseconds, it is a system what is called the class define and we can

calculate here.

(Refer Slide Time: 21:42)

= Example 58.3: Merging strings of String method

Code
s AL
.: :‘L.— 5
§ = :‘_F——J:-
Ny
|

Tine talen 3y Concating wieth Sing: 578
Teme ke Sy Concating waty Strrgliatier Orms

Output

We can calculate the starting time at the time of running the program using this method,
current time millisecond and then at the end of this call, we just calculate the total time that it
required. So, it is basically current time, millisecond and start time and then it gives you
basically time. So, now this basically gives you how much time that is required to do this

concatenation operation; that mean it will basically call the method 10000 time.

(Refer Slide Time: 22:20)

= Example 58.3: Merging strings of String method

Code

Tine taben by Concatng wed Sng ST80y
Teme tahen Sy Concatng with Strrgiighie: Qs

Output

Now, again alternatively here again if we do the same thing, let us know the current time
milliseconds and start time it is always there, this is the start time and then we can call this

method again for the StringBuffer object concatenation and calculate what is the time that is

required and you can see the output the two methods will give that the first this method takes

around this amount of time.

Whereas this will take this amount of time, this indicates a good realization that StringBuffer
object operations are really very fast compared to that usual string plus operation. So, in
general you can prefer the StringBuffer class to store your object, because it is faster it gives
many more methods to perform any operation and it is also allow you to provide a mutable

string generation. So, string buffer is more desirable then the string class we can say.

(Refer Slide Time: 23:13)
B @493

Length and capacity of strings

o —i

* The current length of a StringBuffer can be found via the lemf_\gt‘hé‘[_'l
oug

me&bod,-wbh:&" e total allocated capacity can be foundt
thﬁ' capacity() method.

Now, let us see the capacity of string that as you see there is a method called capacity that
means it will, basically every StringBuffer object associated with a buffer and the capacity of

this buffer can be learned from this method StringBuffer and the length method basically

gives you how many characters are there in the current string objects. So, these are the two

methods are there.

(Refer Slide Time: 24:00)

= Bxample 58.4 : length() and capacity()

Now, let us have some illustration about the installation of these two methods with the simple
program, we create an object of type string buffer name of the object is this one and then we
just print the method, the object as we here it will print this one and then length if we print.
So, this basically print the length means, how many characters are there it will print there and

capacity whenever it is there so it basically 21.

Now, here you see the StringBuffer object when you create, it initially it is basically 16 and
when you just instantiated with this one, it basically automatically grow that means 16 buffer
remain intact and then what ever the additional string is added it automatically grow. So, this

basically the, the buffer size at the moment that mean it has that 21 is the buffer.

So it can hold maximum 21 character at the moment. If we add some one thing it
automatically grow. So, this is the idea about the StringBuffer object and then its capacity

and the length the output.

(Refer Slide Time: 25:07)

= Bxample 58.7: charAt) and setCharAt()

» The value of a single character can be obtained from a StringBuffer
via the char&t{) method. You can set the value of a character within
a StringBuffer using setCharAt().

* Their general forms are shown here:
Char charit(int uﬁssg);

vald setCharAt{int where, char ch)

Now, so far the modification of this concern, there are two more methods usually very much
popular and frequently used the character at and set character at. So, this is basically to
retrieve the character at a particular index, where the argument should be passed as an index
and set character at it basically, as the index and what is the set of characters that can be
passed is basically, some range also can be given, so that a substring of the character also can
be obtained.

So, here are the different example as you can see character and where means this is the index
position and from two, basically to see that what are set of character that you want to get it.

Now let us illustrate this usefulness of these two methods.

(Refer Slide Time: 25:53)

Example 58.5 : charAt{) and setChag\t()

butlet bebore = Ml
charAll]) before = ¢
baather e = Wi
ChAll L) ahes 1

Ourput

|||||

And this is an example that you can think about. So, these are demo program regarding the
character set and set character at. So as usual this is one StringBuffer object we have created
and we print the method there and here character at one. So, in the first location of this one of

this one, so it is there.

So, as you see it basically is sb character at first location. So, it basically this is the string
before it basically this print and this basically character at one it basically print this one. Now
here set character at 1 i you can understand what it does, it basically at 1, it basically replaced

by i. So, as we see this is the one output you can get.

Set length 2 that means we can say what is the length of the character at that second position
so it basically this one or you can say set character at 2 also you can do. So, instead of length
we can do it anyway. So, these are the print method you can see these are the different output
that you can get and you can check the program that it can run for you.

(Refer Slide Time: 27:07)

Hash code of a string object

* The hashCode) of string retunes a unique value for the object. For
an object of type String, it returns different hash code values, from
one to another.

* On the other hand, it returns the same value irrespective of the
contents it contains,

Now, there are, now hash code of a string one important methods, hash code method is
defined in object class which basically overwrite any other class. So, you can either override
this method for your string objects, otherwise, it will automatically return the default hash
code value for the string object. So, this is the idea about let us see some method for which it

is defined there in the StringBuffer class.

(Refer Slide Time: 27:39)

Example 58.6 : Hash code of string objects

There is a hash code method is a method, which can be over writeable. Now, here is an
example that you can check about hash code method here this program actually show the
difference the hash code method for the string class as well as for the StringBuffer class. So,
this is the code which, where we apply the hash code to StringBuffer object and this is the

code where we apply the hash code to the string object.

So, here is the initial string, this is the string object is created and we call the hash code
method for the string and now here again, this is not possible as it will give an error. So, now
if you change it anyway, so this basically change the hash code and it will give it, you can say

to this to str 1 and str that is fine then and strl. So, this is the modification that you please do.

So, it is strl equals to str plus NPTEL and here equals we call strl hash code. Now if you
print it, so this basically this hash code of this Java it basically print this one and you can
modify this string, | mean here is basically concatenate the Java NPTEL and then next hash
code, you can see it is there. So, that two hash codes gives the different that is possible.

Now let us come to that same hash code generation for the StringBuffer object. So, here we
declare one StringBuffer object with this one and here we can have the, hash code as you can
see, this is the hash code. Now here append this NPTEL to this string buffer and if we
generate the hash code, it basically ream the static, so that it will not produce that the

different hash code.

It always produce only hash code of initial StringBuffer object and that will remain same and
if you add it, it will not give that different hash code which is basically different than the
previous string objects.

(Refer Slide Time: 29:57)

String versus StringBuffer
=4
O Strieq class is
I imnutable
StringBafler class O
8 mutabie Siring is haw and
B consunes mee menoy
o « When you corcet tao masy
' strings because avery
SuingBufles is fast and tame it creafEs sew msTance
consumes less menary =3 B
RUOA FPS.UINEL SSRGS String class overndes
!. _ the equais() nethed of
- Dbjest class. o yos
H tan compare the costents
StringBuffer class doesa’t ' | O of two strings by equals{)
averride the eqgalsl} method > method

of Obyect clans

Now string and now you will just, compare string versus StringBuffer and as we have learned
about, so this is related to the StringBuffer, StringBuffer class is mutable where the string
class is immutable. String is slow, this is compared to StringBuffer which is fast and it
consumes more memory compared to the StringBuffer which consumes less memory and you
concat too many strings because every time it creates new instances. So, when you concat

string is basically is the same object is modified.

Now String class overrides the equals method that you can do it for object class. So you can
compare the content of two strings by equal method. Now here, it does not override the equal
method of object class, that is a different that you can verify and writing the program you can

check it and so this is basically string versus StringBuffer.

(Refer Slide Time: 30:59)

= StringBuilder Class

* Introduced by JOK 5, StringBuilder is a relatively recent addition to
Java's string handling capabilifies.

v I’ g
* StringBuilder is similar o, Strin Buffer bxcept for one important difference;
StringBuilder is not synchronized, Which means that it is not thread-safe.

* The advantage of StringBullder is faster performance. However, in cases in
which 3 mutablestring with bz accessed by multiple threads, and no external

synchronization 1€ employed, you MUst e —String®uffer rather than
StringBuilder.

Now, there is another class that is called a StringBuilder class. This StringBuilder class is a
recent addition, introduced by JDK 5 and it basically provides more string handling
capabilities. In fact, StringBuffer is, StringBuilder is very similar to StringBuffer except there
are, one important difference. The differences here that StringBuilder is not synchronized

where the StringBuffer is synchronized.

That means for multi-threading application, if you want to use then you can use the
StringBuffer, but StringBuilder cannot be used. Otherwise StringBuilder and StringBuffer
same. This means the StringBuffer is basically thread safe, while the StringBuilder is not
thread safe.

Now here the advantage of string builder is that it is it basically gives more faster
performance than StringBuffer. However, in case in which a mutable string will be accessed
by multiple threads and no external synchronization is employed, then you must use

StringBuffer rather than string builder.

So, this is the purpose by which new Java developer from JDK 5 onwards, they introduced
string builder and all the constructors methods are basically same, that of the StringBuffer as

well as StringBuilder, so | do not want to repeat them here again.

(Refer Slide Time: 32:29)

» The Complete Reference, Herbert Schildt, 5 Edition, Oracle Press
https://cseitkgp.acin/~dsamanta/favads/index, htmi

hitps://docs.oracke com/javase tutorial/

So for further study, these are links that you can follow and then you can learn about
whatever the example that | have given, you should practice in addition to all the methods
that | have mentioned, you can write your program so that you can check it. Thank you.
Thank you very much.

