
Data Structures and Algorithms Using Java 

Professor Debasis Samanta 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

Lecture 58 

String Buffer Class 

So, String as it is an important concept. So string, Java developer has created this string 

concept in a more detailed way and therefore, many more other class also have been defined. 

So, we have studied one class called the string to process strings, there is another one class 

the StringBuffer which has been added in a recent JDK and further there is another also class 

dealing with string called a string builder.  

(Refer Slide Time: 01:03) 

 

So, in todays discussion includes the different ways the string can be manipulated other than 

the class string. So, basically we will discuss about the new class which is called a 

StringBuffer class and then few illustration with the StringBuffer class, then I will give an 

idea about string builder class and then finally, I will conclude this discussion giving a 

comparison among string, StringBuffer and StringBuilder class.  



(Refer Slide Time: 01:34) 

 

So, let us first have out the concept fast about the StringBuffer. Now, I told you in our 

previous discussion that string is immutable that means once a string object is created, it 

cannot grow further that is why neither you cannot remove one character or you cannot add 

another character into it.  

So that is why the string is basically a constant in that sense whereas, a StringBuffer is 

basically to address this limitation. Now, this means that if you declare a string with 

StringBuffer, you will be able to enjoy all benefits that is available part the string as well as 

some extra flexibility that you can enjoy with this class.  



(Refer Slide Time: 02:26) 

 

Now, let us see what are the different ways the StringBuffer can support to the programmer is 

better than the string class. So, a string is immutable this means that once you create an object 

it cannot be modified you cannot change it. So, you cannot insert any character into it or you 

cannot delete a character from it even you cannot add a character into it append whatever it is 

there.  

On the other hand, the StringBuffer is like a string, but it can be modified that means it is 

mutable. So, we can say the StringBuffer object is a mutable sequence of characters and at 

any point while you are processing a string, it can contains, a string can contains some 

particular sequence of characters, but the length and the content of the sequence can be 

changed by certain call up methods of the StringBuffer class.  

So, this means that if the string is a static one object, then the StringBuffer can give you 

dynamic objects which can grow or it can sync as per the requirement. So everything, every 

StringBuffer object actually of type any string of type StringBuffer in fact can have one 

buffer of it that is why it is name and that buffer is basically having certain capacity which 

the default capacity as the time when you initialize with the length of the string that you have 

initialized.  

So, with that it is a default capacity, otherwise it will go. So, if you add one string with 

another string. For example, a string s which say Java and another string say and you want to 

add it into C plus-plus then s equals to s plus C plus-plus. So, initially it has the length say of 

the same as Java’s length but later on it can expand and then it can accommodate another 

string C plus-plus, so this way they are immutable.  



So, internally that data can be allocated. So, there will be no concept of overflow 

conservatives there. Whatever be the last string you want to add it will do it comfortably.  

(Refer Slide Time: 04:51) 

 

 

Now, let us see how we can create object of type StringBuffer class. So, like String class, 

there are many constructors are defined for this method also. So, here I have listed this is the 

default constructors. So, it is basically with no characters in it and its initial capacity is 16. 

So, this is the default capacity of the string by which it will create and you can create a string 

object by giving a sequence of characters of type this one, so it is basically the string object 

will be instantiated with input as an argument here.  

Rather you can create a StringBuffer object specifying the initial capacity of dusting. So, 

which can be anything other than 16 or any value it is there. Now here also you can create a 



StringBuffer object with passing as an input to the stream. So, there is basically the idea is 

that a string is immutable, how you can change it. So, best idea is that we can create a 

StringBuffer object for that string do whatever it is there, this way a immutable string, if it is 

there, we can make it changeable by means of StringBuffer class.  

So, this is basically the another constructor which takes an input as a string object and then it 

basically create a StringBuffer objects.  

(Refer Slide Time: 06:28) 

 

Now, let us illustrate with an example to understand how we can create the StringBuffer 

objects. So, this is a simple program. So, we are giving a demonstration of StringBuffer 

demo. So, here we create as we see StringBuffer, string object 1 is a StringBuffer type. So, 

there are three objects and we can print the same thing as we have already done for the string 

object.  

So, it is doing and here also you see this is the concatenation that means everything is very 

similar to the string, but it is basically with dynamically that it can grow.  Now, here we just 

we see, we create a StringBuffer object with a initial capacity say 16th we create another 

string object passing string this one is the initial string that we can pass it to this.  

Another string object is created and here we see, we call this constructor passing a string, this 

is basically our usual string and concatenate with a StringBuffer object. So, that is also 

possible. That means string object and StringBuffer object can be used inter-mixingly, no 

issue and a string it is there.  



Now, we can extend these things with an example that you can check it, here a string the 

object that you have created and you can see it is possible a string this is equals to again a 

string plus maybe a, b, c that is also possible, that means for the, if a string this is a string 

object, if it is a StringBuffer object, then it is possible, but if it is a string object, then it is not 

possible. So, you can understand about the difference between StringBuffer and string object. 

So it is mutable actually, that is how you are able to perform this operation.  

(Refer Slide Time: 08:36) 

 

 

Now, let us come to the discussion of methods of StringBuffer, what are the different 

methods that we can think about like string class there are many methods all methods those 

are there in string class also implemented in StringBuffer class. Further in addition to those 

methods in string class that we have discussed it has its own methods.  



Now, there are few methods which are basically new in this is basically append and its 

argument can be any type as we can see, so append can be, so a string object can be append 

with any string or any other data type, any other primitive data type as we see here. So, if we 

call this append method for a StringBuffer object and then we can append to this string with 

any primitive data type, automatically converting to a string type.  

So, these are the statement that you can check it and you can run it and then small program 

you can write calling this method for the StringBuffer object and then you can understand 

how they are work, they work for you.  

(Refer Slide Time: 09:44) 

 

Now, there are a few more methods actually as I told you append method can be called for 

many type of this one. So, here also append and a string that means a string object can be 

appended to a StringBuffer object. StringBuffer object also can be appended to another 

StringBuffer object and it basically from any point of the part of the string can be appended 

to any other point.  

So, here append a string representation of the, this as an argument that basically the integer 

value and then capacity is basically if you want to know what is the current capacity of the 

string. So, capacity and length are the two things, capacity means what is the maximum size 

of the buffer, that the string can currently hold and the length is basically how many 

characters at present the string is having.  

So, that can be obtained and trimToSize, whatever the capacity it is there, it basically reduced 

to the total size of the (())(10:42). So, this method can be used for minimizing the space also. 



So, these are the few methods that we have discussed about there are many more methods 

actually.  

(Refer Slide Time: 10:54) 

 

And few other methods that can be of interesting here I have mentioned character at, so this is 

regarding indexing. So, CodePointAt it basically returns that Unicode value for a particular 

string actually and starting from a given index. So this basically return the Unicode starting 

from a given index of all the characters, those are the Unicode of all those characters.  

So, now, delete is another method, here basically you can remove a portion of a string objects 

I mean StringBuffer object starting from start and end both inclusive. Now delete character at 

is a particular array character at a particular index position also can be removed. 

ensureCapacity, if you want to increase the capacity then you can use this method and get 

characters is basically gives the all characters starting from a particular point index to another 

index.  

So, this basically get all characters in between the two, it is just like a substring calculation 

and this is a tostring as you have known that any object can be converted to the string. So, 

this is the one method by which you can convert to string, automatically a string is 

represented in the form of a string, but it can be called for any other type of data.  



(Refer Slide Time: 12:16) 

 

Now, here is a few more method, this is the index off again. So, it basically to indicate for a 

given string, what is that different index, so return the index within the string of the first 

occurrence of the specified substring that means a substring is given and it is basically the 

return the index of occurrence of that substring in a string for which this method is called.  

So, there are different form of this index also there are, these are another form and insert is 

basically if you want to insert a particular Boolean value into a particular point, then this 

method can be called. Now, like Boolean many other type of primitive data also can be insert 

in a particular position of the string.  

So, it basically represents these are the different type of this one also and these are the many 

methods who is basically related to insert by which the different way, the insertion operation 

to a StringBuffer object can be carried out.  

 



(Refer Slide Time: 13:26) 

 

Now, there are a few more method again related to the Insert, there are various ways the 

insertion can be done. The last index method is same as the string object that we have already 

studied, it is for this StringBuffer class, their last index of string and form index also you can 

same way we have already illustrated these basically return the length of the string is not that 

capacity is basically total number of characters in the string that it is there. So that will return.  

(Refer Slide Time: 13:59) 

 

Now, there are a few more methods there are plenty of methods as I told. So, this is also 

offsetbyCodePoint it is basically Unicode point value starting from an index for a particular 

set of characters it can return. Replace is basically changing the sequence, reverse the usual 

method if you want to make the things into a reverse order. So, if you call the method for a 



StringBuffer, it automatically reverse and it is a mutable way reverse, reverse method is not 

there for the class string that you can recall and set character at basically modifying, these are 

the methods of modifying the StringBuffer object and these are the method for finding the 

substring of a given StringBuffer objects. 

(Refer Slide Time: 14:48) 

 

So, there are many methods that is defined here, we have listed all methods, those are defined 

for the StringBuffer class. Now let us take some time to illustrate few important aspects of 

this illustration of the StringBuffer class. First we will see exactly how a StringBuffer object 

can be modified.  

(Refer Slide Time: 15:02) 

 



 

Now, this is one idea basically many programmer follows how a string object which is 

basically immutable can be modified here. So, this is a clue that I have given as the string 

objects are immutable whenever you want to modify a string, you can copy into a 

StringBuffer or StringBuilder we will discuss StringBuffer shortly and then using the method 

that is defined there, you can just simply modify.  

So, this way a string which is immutable, can be somehow can be modified. And in the 

StringBuffer method in order to modify string there are many methods which are defined, 

which we have already studied and let us have some illustration of some methods towards the 

modification of StringBuffer objects.  



(Refer Slide Time: 15:59) 

 

So, here is an example, this example this program to demo the modification of string objects 

and here we have created a string objects and these of type StringBuffer as you see. Now, this 

is the append method we can call, you can understand what it returns. So, as it is see this is 

output that it will give because it will append and then insert 15.  

So, it basically takes .append now, it content this one and then insert 15 with so, it basically 

insert in this string at this position the another part of the string, which passed as an argument 

will be inserted as we see this basically gives the output. Now replace this one, so 20 to 23 

possibly, this is basically 20 to 23. So, this will be replaced by this one.  

So, it basically say that, this is the part of the substring which will be replaced between this 

portion by the new string, it is this one. So, the string will be expanded as required and then it 

basically modified this one. Delete 14 to 19, you can understand what is the output that it will 

give it, so it will basically remove the character position from 14 to 19 and it will print here. 

So that print you can check it is okay, if you give a system.out.println text then it basically 

give you after the modification, the output it is there.  



(Refer Slide Time: 17:30) 

 

Anyway so you can understand then how if you call, if you create, for example in (())(17:34) 

of this as a simple string and you can call this method you see this will throw a compile time 

exception error you will not able to do that, because it will check it there. Anyway, so these 

are the program that you can check and then hope you have understood the difference 

between string and then StringBuffer there are a few more aspects are there, which is 

interesting to learn about the string manipulation and using the StringBuffer class.  

(Refer Slide Time: 18:01) 

 

So, this is a reverse method which is also not possible for that class string, but it is possible 

for the StringBuffer. So, here we create a StringBuffer object as it is there and then call the 



reverse method then it basically print the string. So, you can see this basically modified by 

storing in the reverse order as we see this is the output that you can get for this program.  

So, this is basically the way that the StringBuffer objects can allow to modify the string. Then 

concatenation is one of the important, concatenation although it is possible for the class string 

but it always concatenate to a new string actually, but in case of the StringBuffer, it basically 

concatenate to the same string. So, string will go automatically as you want to have it.  

(Refer Slide Time: 18:34) 

 

 

Now here is the few usual concatenation method that you can done, that you can do using the 

string class object of string class string like as you see, these are the different there are concat 

method is also possible, but it returns the new string as you can see, this method is different 



than the StringBuffer method that it can allow you. So as we see here for the StringBuffer, if 

s1 is a string object of type StringBuffer then you can do it.  

But if these are the string, then you cannot do it, as this is not mutable for the string that is 

why. So in this case, you will not be able to do, but if you define them, s1 s2 as a 

StringBuffer, you will be able to do that. So, whatever you can do is in string one and you can 

declare StringBuffer for them. Also, you will be able to do that. In addition to this, you will 

be able to do that also.  

(Refer Slide Time: 19:54) 

 

Now here are few example that is very interesting to observe it. So this is a concatenation and 

we are doing concatenation with string object, so it is there and here basically go on 

concatenating it basically (())(20:07) we call it concatenate return it, but here as we call this 

concatenate method, this concatenate method is return the concatenated value into the string. 

So, this string will automatically go by each time in NPTEL string is added and then it 10000 

time the string will be added.  

But here this is only NPTEL string will be added to this Java and then new string will be 

created this is a different output you can check the print statement here and if you give the 

print statement here, then you can understand how the result will be obtained. Now, let us see 

the difference between the two concatenate method that is there in string and string 

(())(20:47).  



(Refer Slide Time: 20:49) 

 

Now, here is that in order to understand the difference, we can write this program and then 

you can check it. So, here this is the main class we are calling the two methods that we have 

declared and now, we want to check that how much time that is required for the first 

concatenation and then, the second concatenation, the second concatenation namely with 

StringBuffer class and the first concatenation namely with string class.  

So, the two methods are called and time we just calculate, this is one method by which the 

time can be calculated. So, it is defined in java dot lang. So, the start time system dot these 

are current time milliseconds, it is a system what is called the class define and we can 

calculate here.  



(Refer Slide Time: 21:42) 

 

We can calculate the starting time at the time of running the program using this method, 

current time millisecond and then at the end of this call, we just calculate the total time that it 

required. So, it is basically current time, millisecond and start time and then it gives you 

basically time. So, now this basically gives you how much time that is required to do this 

concatenation operation; that mean it will basically call the method 10000 time.  

(Refer Slide Time: 22:20) 

 

Now, again alternatively here again if we do the same thing, let us know the current time 

milliseconds and start time it is always there, this is the start time and then we can call this 

method again for the StringBuffer object concatenation and calculate what is the time that is 



required and you can see the output the two methods will give that the first this method takes 

around this amount of time.  

Whereas this will take this amount of time, this indicates a good realization that StringBuffer 

object operations are really very fast compared to that usual string plus operation. So, in 

general you can prefer the StringBuffer class to store your object, because it is faster it gives 

many more methods to perform any operation and it is also allow you to provide a mutable 

string generation. So, string buffer is more desirable then the string class we can say. 

(Refer Slide Time: 23:13) 

 

 

Now, let us see the capacity of string that as you see there is a method called capacity that 

means it will, basically every StringBuffer object associated with a buffer and the capacity of 

this buffer can be learned from this method StringBuffer and the length method basically 



gives you how many characters are there in the current string objects. So, these are the two 

methods are there.  

(Refer Slide Time: 24:00) 

 

Now, let us have some illustration about the installation of these two methods with the simple 

program, we create an object of type string buffer name of the object is this one and then we 

just print the method, the object as we here it will print this one and then length if we print. 

So, this basically print the length means, how many characters are there it will print there and 

capacity whenever it is there so it basically 21.  

Now, here you see the StringBuffer object when you create, it initially it is basically 16 and 

when you just instantiated with this one, it basically automatically grow that means 16 buffer 

remain intact and then what ever the additional string is added it automatically grow. So, this 

basically the, the buffer size at the moment that mean it has that 21 is the buffer.  

So it can hold maximum 21 character at the moment. If we add some one thing it 

automatically grow. So, this is the idea about the StringBuffer object and then its capacity 

and the length the output.  



(Refer Slide Time: 25:07) 

 

Now, so far the modification of this concern, there are two more methods usually very much 

popular and frequently used the character at and set character at. So, this is basically to 

retrieve the character at a particular index, where the argument should be passed as an index 

and set character at it basically, as the index and what is the set of characters that can be 

passed is basically, some range also can be given, so that a substring of the character also can 

be obtained.  

So, here are the different example as you can see character and where means this is the index 

position and from two, basically to see that what are set of character that you want to get it. 

Now let us illustrate this usefulness of these two methods.  



(Refer Slide Time: 25:53) 

 

And this is an example that you can think about. So, these are demo program regarding the 

character set and set character at. So as usual this is one StringBuffer object we have created 

and we print the method there and here character at one. So, in the first location of this one of 

this one, so it is there.  

So, as you see it basically is sb character at first location. So, it basically this is the string 

before it basically this print and this basically character at one it basically print this one. Now 

here set character at 1 i you can understand what it does, it basically at 1, it basically replaced 

by i. So, as we see this is the one output you can get. 

Set length 2 that means we can say what is the length of the character at that second position 

so it basically this one or you can say set character at 2 also you can do. So, instead of length 

we can do it anyway. So, these are the print method you can see these are the different output 

that you can get and you can check the program that it can run for you. 



(Refer Slide Time: 27:07) 

 

 

Now, there are, now hash code of a string one important methods, hash code method is 

defined in object class which basically overwrite any other class. So, you can either override 

this method for your string objects, otherwise, it will automatically return the default hash 

code value for the string object. So, this is the idea about let us see some method for which it 

is defined there in the StringBuffer class.  



(Refer Slide Time: 27:39) 

 

There is a hash code method is a method, which can be over writeable. Now, here is an 

example that you can check about hash code method here this program actually show the 

difference the hash code method for the string class as well as for the StringBuffer class. So, 

this is the code which, where we apply the hash code to StringBuffer object and this is the 

code where we apply the hash code to the string object.  

So, here is the initial string, this is the string object is created and we call the hash code 

method for the string and now here again, this is not possible as it will give an error. So, now 

if you change it anyway, so this basically change the hash code and it will give it, you can say 

to this to str 1 and str that is fine then and str1. So, this is the modification that you please do.  

So, it is str1 equals to str plus NPTEL and here equals we call str1 hash code. Now if you 

print it, so this basically this hash code of this Java it basically print this one and you can 

modify this string, I mean here is basically concatenate the Java NPTEL and then next hash 

code, you can see it is there. So, that two hash codes gives the different that is possible.  

Now let us come to that same hash code generation for the StringBuffer object. So, here we 

declare one StringBuffer object with this one and here we can have the, hash code as you can 

see, this is the hash code. Now here append this NPTEL to this string buffer and if we 

generate the hash code, it basically ream the static, so that it will not produce that the 

different hash code.  



It always produce only hash code of initial StringBuffer object and that will remain same and 

if you add it, it will not give that different hash code which is basically different than the 

previous string objects. 

(Refer Slide Time: 29:57) 

 

 

Now string and now you will just, compare string versus StringBuffer and as we have learned 

about, so this is related to the StringBuffer, StringBuffer class is mutable where the string 

class is immutable. String is slow, this is compared to StringBuffer which is fast and it 

consumes more memory compared to the StringBuffer which consumes less memory and you 

concat too many strings because every time it creates new instances. So, when you concat 

string is basically is the same object is modified.  



Now String class overrides the equals method that you can do it for object class. So you can 

compare the content of two strings by equal method. Now here, it does not override the equal 

method of object class, that is a different that you can verify and writing the program you can 

check it and so this is basically string versus StringBuffer.  

(Refer Slide Time: 30:59) 

 

 

Now, there is another class that is called a StringBuilder class. This StringBuilder class is a 

recent addition, introduced by JDK 5 and it basically provides more string handling 

capabilities. In fact, StringBuffer is, StringBuilder is very similar to StringBuffer except there 

are, one important difference. The differences here that StringBuilder is not synchronized 

where the StringBuffer is synchronized.  



That means for multi-threading application, if you want to use then you can use the 

StringBuffer, but StringBuilder cannot be used. Otherwise StringBuilder and StringBuffer 

same. This means the StringBuffer is basically thread safe, while the StringBuilder is not 

thread safe.  

Now here the advantage of string builder is that it is it basically gives more faster 

performance than StringBuffer. However, in case in which a mutable string will be accessed 

by multiple threads and no external synchronization is employed, then you must use 

StringBuffer rather than string builder.  

So, this is the purpose by which new Java developer from JDK 5 onwards, they introduced 

string builder and all the constructors methods are basically same, that of the StringBuffer as 

well as StringBuilder, so I do not want to repeat them here again.  

(Refer Slide Time: 32:29) 

 

So for further study, these are links that you can follow and then you can learn about 

whatever the example that I have given, you should practice in addition to all the methods 

that I have mentioned, you can write your program so that you can check it. Thank you. 

Thank you very much. 

 


