Data Structure and Algorithms Using Java
Professor. Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture No. 54
Programs for Sorting (Part-2)

We are discussing about writing programs for sorting techniques in the last video lectures we

have discuss few sorting techniques programming for 4 sorting algorithms.

(Refer Slide Time: 0:33)

0

CONCEPTS COVERED

» Programming for Sorting Algorithms n n E [

» Radix sort

» Quick sort 44 = D
y

Here we will discuss 2 very good sorting method called radix sort and quick sort.

(Refer Slide Time: 0:41)

Radix Sort Algorithm

Now radix sort algorithm as you know for different type of data the different radix to be

consider.

(Refer Slide Time: 0:52)

<= Radix sort: Concept

+ A sorting technique which is based on radix or base of constituent elements in keys is called radix
sorl. The radixes and bascs n few important number systems are listed i the table given below.

Number system Radix Base Example

Binary Oand | 2 0100, 1101, 1111

Decimal 0123456789 10 326, 12345, 1508

Alphabetic ab..z 26 Ananya, McGraw
AB..Z

Alphanumenc Az A Zad0.9 |3 06116014
05CS5201

So, writing generic program is really very difficult for this because the bucket can varies an

accordingly memory can be different.

(Refer Slide Time: 1:00)

<= Radix sort: Concept

pass 1 Pass 3
Sorting on Ish Sorting on 3sh

/_\ /\ Ssorted binary
numbers

1o 1Moo [thoo o001
000 |t001 0001
0
(

10 1
|

L1110 1001 01 0010
(
(

01
110
001
111
000
10
101 0100

101)10 0101

((0001|1010 <0110
0110 0010 1100 0111
110 ool 1000

|

0

0]

—_—s o — o = o == -]

1
1odono o 1001
otifil odol o1to joito 1010
otio] o oxn

Unsorted \-/1

binary numbers Pass2 Pass 4

Soting on 2sb Sorting ou msh

111 1110

But here we will discuss about the radix sort. | will give you the radix sort for integer numbers
and again the radix sort while you write the code you have to think about how many maximum
number of elements rather we can say digits in case of decimal number system or bits in case of
binary number systems are there. Now this is one example of binary number system that we have

discussed while we have discussing this radix sub technique.

You can implement fast this is binary sort is easy. So, only 2 buckets are there logic is also very
simple only the important thing that you have to think about is that how to find the considered
element starting from the LSB MSB and everything. | will give you a logic for that so that you
can follow the same logic but you can try with other different type of data.

(Refer Slide Time: 2:02)

<= Radix sort: Algorithm

* For each base in the mmber system *
1. Fori=ltocdo ¢ denotes the most significant
position
Forj=ltondo Tor all elements in the array
4
x Extract(Afj].1) Get the i-th component in the j-th
clement
4 Enque(Q.. 4))))
EndFor
* Combine all elements from all awviliary arrays to A (assume . is empiy*
6 Fork 0o (h-1)do
While 0; s not empty do
8 vy = Dequeuc(Q;) Dequeue of y from the queue
O
9 Insert(A, y) Insert y mto A
10 EndWhile
1 EndFor
12. EndFor
13 Stop

So, here is basically logic extract is required because we have to extract the ith element in the ith
pass for a number actually. And in case of binary bits whatever be the total number of string size
is there absolute no problem it will run it. So, the number of alteration will depends on how
many total number of bits or number of digits are there in a system. And the number of buckets

is basically depends on algorithm radix of the system.

For the decimal number system number of buckets or you can say number of arrays rather that
needs to be stored in case of this one is the 10. In case of binary system only 2 and size of the
arrays that is bucket actually should be same of the total number of element that is there in their
input list. So, if you want to sort n elements of list of n numbers, then the size of the bucket or
each bucket should be of n actually that is the problem.

So, that is why this sorting algorithm radix sort is okay not good for memory constant write
procedure environment because you have to have huge amount of memory if n is say suppose
1000, then a decimal number system is used, then definitely 10 into 1000 extra memory is
required to do the sorting technique. Otherwise, it is very easy actually because implementation

IS very easy.

(Refer Slide Time: 3:33)

<= Example 54.1: Programming for Radix sort

a.lenglh; i +4)
-print(this.gctvata(i) + ¥

Now here is the code that you can think about | am giving a code for you hint you try to see how
| have solved this problem. And it may take some time to understand if you want to understand
according to your own level of understanding but | am giving highlighting how | am | have
written the code here. So, as usual | have declared this as a generic so that it can take any type of
number or string or long, float, long whatever it is there | am not using the float number because
floating point is not good actually to you use it, but it can take floating point number also starting
from the lowest significant digit to the most significant digit including decimal also but here

decimal needs to be eliminated there.

So, we are declaring the generic type and then print data to auxiliary method to print the array of

element that is a as usual for other so it is not so difficult to understand.

(Refer Slide Time: 4:34)

<= Example 54.1: Programming for Radix sort (finding constituent)

if (x instanceof Lon
return (T)new Tong(«
else
throw new illcgalarqumentixception(" 4 x.qetclass() + " i t rted.”);

Now next part is basically how | am just extracting each component of a given elements here you
can see how I do it so it is basically x and y, y is depending upon radix if you use the binary
system it will be 2 otherwise, it is 10 depending on number system decimal if it is hexadecimal
then so | hexadecimal sixteenth and depending on this one and then you just see how exactly we

are dividing each elements and then getting each component in the elements.

And so this basically to take about for the different sort integer bits and long so this means that
this program will work for integer, sort byte and long to 3 different. Byte is basically for binary

numbers it will work. Anyway this basically implementation that you can think about.

(Refer Slide Time: 5:34)

<= Example 54.1: Programming for Radix sort (finding constituent)

int v {
if (x==null || y =)
return null;

if (v instanceof Tnleger)
return (I)new Intc tvalue() § y);
if (» instanceof Sh
return (T)new Tnle
if (x instanceo;
return (T)new Tnle
if (x instanceof Lo
return (T)new Tong(x. |
else

throw new illcgalirgqumentixcoption(”: " # x.getClass() + " 1 t rt)i

Now here is the next part of the code that you can think about how | am giving you the modular
suppression is require in our to find the modular value. So, that you can find a so the different
constituent you can find it. So, this is the part and then we can go to the bucketing.

(Refer Slide Time: 5:55)

<= Example 54.1; Programming for Radix sort (auxiliary methods)

So, this part is basically being the bucketing here so depending on the value that we can write
and then the bucketing is there and then you can copy the bucket. And finally we can store the

element and then sort it.

(Refer Slide Time: 6:08)

<= Example 54.1: Programming for Radix sort (auxiliary methods)

)
dulus (division(alil,cxp), 10) . intvaluc 0 1-1)=ali];
us(division(afi],exp),10) . inlValue()]--;

for (i=0;icsize;it4)
alil=oulpul [i);

So, this basically the sorting that I follow it and it basically give one each element then put into

the bucket and then sort it there. So, this is basically the main sorting activities

(Refer Slide Time: 6:24)

<=_ Example 54.1: Programming for Radix sort (auxiliary methods)

And then finally it basically perform the sorting technique here. So, call all the method that we
have discussed so this is the main method whether radix method actually you can say. So, getting
the elements just taking the bits or digits and then perform hexa bucketing. It basically solves the

program. So, this is the code I have written for you. You can check it you can run this code for

the beginning you can see whether it is working or not giving the input. And how to run the code

master program is given that master program you can think about it.

(Refer Slide Time: 7:09)

<=_ Example 54.1: Programming for Radix sort (auxiliary methods)

ing<integer> arrayint = new CencricArraySorting<integer>(i);

Here is the main method that basically giving the demo of the radix sort. So, this is the main
method this is the data that you have given, 2 digit each and you can see the agitation of the
algorithm you can again run this program with varieties of input combinations, you can take
some is 1 digit number, some is 2 digit numbers, some is 3 digit number also you can check it
also will work and also you can take with different type of data here integer long, sort, byte and

then integer also you can take it.

String also you can take it also you can see how it works. Because you convert into this and then
it can work if convert in the Unicode and then Unicode to this one some modification you may
needed to if you want work with string, but radix sort is for number system only. If you want to
apply sorting algorithm for your user defined type it may not work. So, it is not advisable to
follow this one. So, it has this that limitation. So, this algorithm is you can run for different type

of input, different input cases or different test cases and check that it is working.

But running but other than running you can see how the logic has been implemented and what is
the code it is there. And that you can follow otherwise you can see this is the logic that you have

to implement. If you understand then you better write your own methods own sharps methods

and call them in your own program better that is the good idea that you can think about it. So,

first you try to understand logic and then the algorithm you can follow.

Whatever the algorithm that is there algorithm of higher level programming and then you can
think the programming according to your own understanding that is the best way that you can

write programs. So, this that is more advisable, so this is the radix sort.

(Refer Slide Time: 9:11)

Now quick sort algorithm as we have discussed it is based on the dived and conquer principle.
This is one very what is call the popular sorting algorithm you can find readymade code in many
books also, but practicing code and writing the program of own following the logic that is the

most advantageous and that you should do.

(Refer Slide Time: 9:45)

<= Quick sort; Partition concept

So, let us see what is the first logic of this algorithm. Here divide and conquer mean the fast you
have to write the partition method again there are many algorithms you can find implementing
this partition, you can follow any algorithm, follow the algorithm write your own code do not

copy code from here and there.

(Refer Slide Time: 10:02)

<=_ Quick sort: Algorithm partition

Algorithm Partition(left, right)

1 doc et The left most clement is chosen as the pivol clement
2 While ((left - night) do Repeat unti the anned
3 While(A[loc] < A[right]) and (loc < night) do S ght o lcf

4 nght = nht -1 No interchange. Move from left to night
b EndWhile

6 Tr(A[loc] > A[nght]) then

1 Swap(Afloc]. Afright]) Interchange the prvot and the element at right
8 loc right The pivol 1s not at the Tocation nght
9 left =left+1 Next scan (left to right) bepins from this location
10 Endlf

1l While(A[loc] = A[lcll]) and (loc > Ief) do Scan from lel o ight

2 left=1eft +1 No interchange. Move from right to left
13 FndWhile

14 10(Afloc] < Aleft]) then

15 Swap(A[loc]Afleft]) Interchange the pivot and the element at left
16. Toc lefi The pivol is ol at the Tocation Iefi
1. rght = pght-1 Next scan (rght to left) beguns from thus location

18 il

19 EndWhile

20 Return (loc)

20 Stop

Continue

| am giving you the algorithm here you can follow this algorithm also this is the one algorithm.
There are plenty of algorithms are available from any book in the book of (())(10:13) structure
also several algorithms is given. How to implement partition algorithm? So, best idea would be

this one

(Refer Slide Time: 10:20)

<=_ Quick sort: Algorithm

1. Loc = Partition(left. right) left and right are two pointers to locate partitions
at left and right. respectively

2. (It < nght) then Check for the termmation condition

3. QuickSort(A. lefl. loc-1) Perform quick sort over the lefl sub hist

4 QuickSort(A. loc! 1. right) Perform quick sort over the right sub-list

5. EndIf

6. Stop

And this is the quick sort algorithm is a recursive (())(10:23) and if you do not know recursion,
then definitely it will first you should practice about how to write recursive program. In the book
of (())(10:34) there are many example is given how to practice recursion also that you can

follow.

(Refer Slide Time: 10:38)

<= Example 54.2: Programming for Quick sort (Generic class)

Sorling<T extends Comparable<T>> (

T getvata(int i) (
return a[i};

generic method to print the clements in array a

i 0 <a.lenglh; i 44)

stem.out.print (this.getoata(i) + * ");
inkin(); L 4 ne

And here is the quick sort techniques, again I am defining is using the generic facility generic
programming. In all my programming practices or demonstration, | gave the generic
implementation and that is the most important thing as an advance programmer you should
follow it. Now here is the generic implementation of the class. So, this is the generic the simple

method get, print all this things are standard here.

(Refer Slide Time: 11:15)

<= Example 54.2: Programming for Quick sort (Generic class)

i<high; j+4) {
if (arc(j].compareTo(pivol)<i) {

cmp = arrli);
arc(i] = arr[j);
arr(j] = temp;

)

temp = arr(i+l];
arc[i+]] = arc[high);
arrfhigh] = temp;
return i+l;

Now next is the code for the different routine so first of all | write to write the partition routine

here. | just gave an idea about an implementation of the logic partition. So, this partition is

basically including swapping and everything that is works. You can just simply test that how this
partition works for given input, so partition means you take the first element and place into its
least into its position so that any element in the right part of this right element is basically greater

than and any element in the left part of this element is lower.

And again you can try partition with many elements are of the same that mean duplicate two or
three numbers are the same you can see that it also still working or not because this are the test
case that you have to some student write code it cannot work for many cases. Many situation that
is not good so you have to check it and again you can check that whether giving the order in

ascending order, descending order, whether it is working or not that you can check it.

And then finally, after giving some string data that also you can check so that it works, you can
check whether it is working or not. So, this are the different situation that only partition can be
practice more extensively that | should say suggest you to do to it partition is the heaviest part in
the quick sort algorithm. So, this is the logic that | have given this algorithm that you can follow
you can check that it is working. Then you try to understand the logic it is follows or you can
follow any other algorithm and then you can implement it so this is the partition technique and

then recursive version of this algorithm we can write it.

(Refer Slide Time: 13:01)

<=_ Example 54.2: Programming for Quick sort (Generic class)

This are the following part of the code is basically quick sort technique as we see here we call

partition and then we call the quick sort or the left part of the list and this the right part of the list

and this is the boundary condition, whenever you write any record sheet condition the boundary
condition is there. So, this is the boundary condition how long the quick sort technique should be

call recursively.

So, this is important this is the quick sort technique as a whole as you see the partition is only
method that you have to think about it. So, here after partition you can print the list you can see
how it is printing the elements. So, this is the implementation of the algorithm.

(Refer Slide Time: 13:43)

<=_ Example 54.2: Programming for Quick sort (main class)

And then finally let us come to the discussion of testing the program. Here, this is basically the
demo, which basically gives basically test the program that you have develop. We consider input
array integer and then we just create the generic arrays and then call the method print data for the
initial list. And then call the quick sort and you check that how you call the quick sort method in
this case. And finally we print the data it right. So, here we have considered integer of all size

like this one this the standard input we are considering to give the demo for all.

But you should consider different elements of different size different length and the different
type and again different pattern arrangement. Either ascending, descending or whatever it is
there. Again the best idea would be that you can generate some random numbers store in a file
you can write open the file get the data put into array and then that array can be pass to the

sorting technique that you can try and practice that will be the best idea to do that.

And here again | have used the integer data you can use the string some names and then pass this
there you declare the string and then you can call the method it also will work. Next is basically
user defined data type that if you want to do then you have to implement compareTo method. So,
compareTo method you can add into the end of the generic class declaration as the user defined
declaration the compareTo method it works for that. So, you can define the class student all the
constructor that you can defined and finally compareTo how to compare. And it will work for

you. So, this is the idea about quick sort implementation.

(Refer Slide Time: 15:38)

<= Example 54.2: Programming for Quick sort (main class)

And here actually | gave the idea about how the sort can be executed using some string so that
algorithm you can check and you see that it is also working so that is the one hint it is given
there. So, | hope you have understood about how to implement different sorting algorithm

(Refer Slide Time: 15:57)

For details of the discussed
sorting algorithms

See the book

Classic Data Structures
Chapter 10
Prentice Hall of India

I have only consider few sorting algorithms in this programming demonstration and it gives an
idea about how to write code for programming. Now sorting and searching two types of
algorithms usually programmer consider to practice their programming and they can learn many

things from right implementing all those sorting algorithm.

So, there are many more sorting algorithms also known like counting sort, sales sort and then
there are many other sorting like techniques that you can implement (thou) in this book cover
many sorting techniques and many searching techniques also there I could not cover all sorting
and searching techniques into the code, but you can write practice that will help you I think fine.

We can stop it here, thank you.

