Data Structure and Algorithms Using Java
Professor. Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture No. 53
Programs for Sorting (Part-1)

So, we are discussing about sorting techniques and sorting is used to sort a collection, collection
consist of any type of data. Now today we will discuss about programing aspect of different
sorting techniques. We have learned about the different sorting techniques, their concepts and
then algorithms there in a complexity analysis but now we will just try to learn about how to

program those sorting algorithm.

Now before going to start this discussion, | want mention one important thing, programming that
I will discuss it just for a hint but if you should not just only run the program, rather best idea
would be that if you understand the logic and then follow some algorithms whatever algorithm |
have discuss in this course that you can follow or the algorithm those that they are in books
whatever the things if you learned that this algorithm is you are more comfortable you can follow

this algorithm no issue, then try to write the code of your own.

So, here whatever the course that | am going to explain or illustrate this is for your hint only. So,
you can check you see that program is running but you will not be happy for that only the thing
is that if you can write the code of your own and then run it and then you should feel happy it is.
Now so this code that | am giving you this is just for your hints only. So, that in case suppose

you find it difficult to write the code you can follow that how it is being implemented.

(Refer Slide Time: 2:19)

@ 6

CONCEPTS COVERED

» Programming for Sorting Algorithms
7 Insertion sort
» Selection sort
» Bubble sort

» Heap sort

So, this part that is important, now let us see what are the codes that we are going to discuss
today. This is related to 4 different sorting algorithms shall discuss namely; insertion sort,
selection sort, bubble sort, and heap sort, and here again all these sorting that will implement
considering the generic only. Generic means that you write the code once and then apply this

codes to sort any type of data so that is a generic programming we will consider.

In many of the books you can find only the simple sorting technique to start to sort integer data,
but here you should run the program. Whatever the program | have given or you can write the
code then you should try to run the codes for any type of data including your user defined data

type also that will be the most advantageous from this course if you can do that.

(Refer Slide Time: 3:10)

<= Sorting techniques in this course

So, let us start about first insertion sort technigue.

(Refer Slide Time: 3:14)

<= |nsertion sort: Concept
ENE=== O N
=

ez e et et e

deomuizassiale 4,

ouitist

[<]<] s [

«— —

Scanthe etz g om
el by B et [X

el == [o I

|x|x]|m|x]x|[Kl I

The program of the insertion sort | just do not want to discuss the sorting algorithm again
because | understood that you have already covered it, so it the pre requisite for this.

(Refer Slide Time: 3:26)

<=_ |nsertion sort: Algorithm

1L BlEAN Inutially first element in the wput lst ss the first element w the output List
2 Forj 210Nde Comtinue Laking one key al a fime from the input list
* Select the kev K from the mmput list *
3 K Al Kis the hey mnder msertion
7+ Search the final location i in the owtpu list *
4 flag=1RUE Lo control the number of scan in the output list

. gl Ponts the rightmost cloment m e oufpat list
6. ‘While (flag = [RUE) do / Scan until we pet the place for K
7 11K < Blt)) then.

% =l

9 1= 0) then Sto f the s 5 exhonsied
10. tlag ~FALSE
l Fall
12 Else
13 flag = FALS Siop bere
" Endil
15 EndWhile
* Move 1o ight one place allthe keys from andafter 111 %

16 p=)
17 While (g1 11) do
18 Hipl =B
19 PPl
20 FadWhile
* Insert the keys at i+1 th place */
2 LTS Trsert the key af the (31 1)-th place
22 EndFor
23 Stop

So, this is the insertion concept that is their algorithm I have already mention you can follow this
algorithm.

(Refer Slide Time: 3:30)

<= Example 53.1: Programming for Insertion sorting

ionSort. <T extends Comparablc<T>> {

nsertionSort (T[] arr, int len){
;1< len; 4 &y
int j = i;

while (j > 0 & arr[j].comparcTo(arr[i=11) > =1){

T tonp = arr(j);

arclj] = acc[j-1);
acc[j-1] = Lemp;

-1; ¥id T
b NPTEL

And | have followed this algorithm of course in this programming practice. Now here is the code
you just follow the code how we have to write the write. We are declaring a class the name this
class is declared as generic class as we have said so this is the t that mean this class can take any
type of data but here we have to take the extends as you know this is basically limited to data
which basically comparable. Now here the t the comparable type there are many datatypes those
are comparable like all numeric datatypes those are basically sub class of the class numbers like
say integer, then float and then long sort, double whatever it is there.

And also string type string class is also comparable. So, this t basically any sub class of the class
number as well as string is basically you can use it. Otherwise if you want to, if you want to use
this sorting algorithm for you own datatype say student, person or whatever it is there, then you
have to implement this comparable method, the compareTo method or this class comparable. So,

you have, in this class you can write that over write compareTo.

So, method compareTo can be written for this class then over write that procedure | will discuss
also. | have discussed in earlier discussion also | have used that kind of concept but here again |
will give some idea about how it can use it. Anyway so this, this is basically the concept you
should follow that means I that you should write generic programming that is good only and this
is the class that we this is the method which belong to this class this is the method is basically the

implementation of the insertion technique algorithm.

This method takes an array of elements, elements of type t and this required another argument it
is called the what is the size of this array that is needs to be passed. Then this is the simple logic
it is called the logic that is discussed in case of insertion algorithm. It basically starts from the
current location to check that whether the elements to be inserted in which position according to

the partially sorted list actually this logic is implemented here.

And that you can write you can check it and here we are using compareTo in this scale number
already the compareTo method is implemented but you can overwrite this compareTo method so
that for any other datatype other than all those comparable type we can apply them. And so this
is the procedure it is just simply whenever we found that the element needs to be placed here, so
we just simply swap the element and that is the main logic of insertion sort.

So, algorithm we have discussed and then implementation logic is so simple that you have
checked it. So, it is very simple so you can follow it. The code is written in a little bit
proportional ways so that it is most compact and then reverse code and you can use it.

(Refer Slide Time: 6:53)

<=_ Example 53.1: Programming for insertion sorting

And then finally you can write a driver program so that you can test this code writing a main
method and this basically is the code to print the array that is simply for loop only you have used
it.

(Refer Slide Time: 7:01)

<= Example 53.1: Programming for insertion sorting

ic void main(String[]) args) (

And here is the main method, the main class actually who is basically to test whether this
program is working or not. So, here the main method which we discuss in within the same class
actually otherwise you can write another class and say it is insertion sort demo and then you can

call this method including that class declaration here.

Anyway, so here we consider an array of object so this is array and you just note that integer
array we have declared because it is a generic so we have to pass the object only so that is a
integer array. So, if you declared int array, it may not over for you because they generic so
integer array it to be declare as an object like so this a wrapper method you have to call. So, this

is basically the elements which is stored in into this array, array is an array of integer objects.

So, these elements, n is the array dot length because automatically complete how many elements
are there you can print array the method we have already declared there to print the elements and
then call the method insertion sort passing this array as an argument n is the length it basically
sort the elements and then print the array. Now so this is the program that okay the simple few
lines of code and that occurs that basically that matters how it sorts according the insertion sort

other sorting algorithm in the same line actually only the logic is different.

But it is moreover the same actually and here | want to give some hints about or the tips that you
can test it using different type of array here | have used a random array. You can think about

array where all elements are same or you can consider an array of in ascending order or

descending order. So, different way you can think about it. And then you can run the program for
different inputs and another consideration that you should do is that you can generate some

random numbers, very large set of random numbers and store random numbers in a file.

You have already cover about file handling and then you can read the data from the file, put into
the array and then stored into the integer array and then you can call this, so that will be the good
way that you can run your sorting algorithm for very large set of numbers that is the good idea I
hope you have understood it so that you should follow for all sorting techniques that you have

write programs so this is the insertion sort.

(Refer Slide Time: 9:43)

—

Selection Sort Algorithm

Now let us consider selection sort the algorithm we have already discussed in details with
illustration is basically select the minimum elements and then take place in the minimum

elements in the ith position if it is in the it is in ith alteration.

(Refer Slide Time: 10:01)

=" Selection sort: Algorithm

Algonthm SelectionSort (A n)

1. [For1 Tto(n-1)do (n-1) vertions

1 = SelectMin(1, n) Select the smallest from the remaung part
of the hst
(1) then [Trterchange when the minitun
10 remote
1 SwaplAfiL ATl
S Endlf
6. FadFor
7. Stop
Algorithm SelectMun (L. R) Algonithm Swap (X, Y)
L= AL {1 ttially, - the slem Al the startamg focation is chosen i the LIX Xy Xholds total of the both the values
smalkst 2.1Y=X Y Y now holds the previ
3 maloc L J/ mial o secord the ocation of the 31X X-y X riow holds the previons value of Y
T 1 Stop

i Feri=lelioRdo /! Sewrch the entire

part
1 I (in ~ ALL)) then
§

min Al 1/ Now the smallest 1s updated
here
5. il oc =1 New location of the simallest so
E'S
Endlf
& EndFor
7. Return(muLoc) Retura the location of the swalkest

elament

And this is the algorithm that we have given to you for your understanding it requires some few
codes like swap because it require to be interchange and the select mean. How to find a
minimum this is the algorithm very simple algorithm, finding minimum is a very simple task and

then it is basically the main selection sort that you can do it.

(Refer Slide Time: 10:21)

<= Example 53.2: Programming for Selection sorting

iunSorl <7 extends Comparable<T>> {
Sur T, il len) {

§ seleclluns

for(int ; i<len; j+4)
if(arr[minTndex] .compareTo((arr(j1)) > 0){
minindex = §;

And here is the code that you can follow so again we just declare one generic class name of the
class is selection sort. It is comparable so that any type of data and this is the method that we are
going to discuss. It is basically same ways that the insertion sort we have done. And this is the
logic of the selection sort that we have discuss about it and this is basically the method that we
can find about the swapping. And that is okay in the finding the minimum and swapping it takes

place in the same line actually here.

(Refer Slide Time: 11:00)

<=_ Example 53.2: Programming for Insertion sorting

And then next part of the code that you can think about it is basically how to find a print, how to

print the array. So, that is the sub method or auxiliary method you can write.

(Refer Slide Time: 11:09)

<= Example 53.2: Programming for Selection sorting

selectionSort.(arr, n);

System.out.printin(® t ting:");
printirray(arr, n);
}
} Fnd ot the program

And then finally the main method that you can discuss about here, here is the main method so
this is the main method in the same way with this state the insertion sort it is the same way you
can create an initial array and then you can just sort using selection sort here. Here again we have
considered integer array, you can consider some other types of array like long, float, or double,
sort.

Even you can consider the string array also where the string can be putted and then you see that
this algorithm what for any type of data including string also and if you over write the
compareTo method or your user defined like student, person, and everything then you can create
the array of objects and then you can call the selection sort for this array in the same. Only this
part will different and then defining the compareTo method will be different. Then you can use

this algorithm to sort any type of data that you want to sort so this is the selection sort.

(Refer Slide time: 12:19)

Bubble Sort Algorithm

<= Bubble sort: Concept

Q I-th largest elements

sinks and placed here
J A Smaller elements

T o O bubble up in inner loop

O3 O-—-3» O-—P

i-th outer loop

IR (I-1) elements are sorted
" -~ and stored here

Then let us discuss about the bubble sort, bubble sort you know exactly how you can do it, n
number of passes it is required in each pass the largest element will go to the bottom direction
and then smaller number will try to pop up little bit upwards and finally after n minus 1

alteration, all elements will be in sorted order.

(Refer Slide Time: 12:44)

<=_ Bubble sort: Algorithm

Algonthm BubbleSort (A, n)

I Fori=lton-ldo / Outer loop with n-1 passes
2 Forj 1wnido /1 Tnner loop: n the 1-th pass

3 IFAL] > Al#1]) then /1 Cheek af two clements arc out of order
4 Swap(A[J). Ar1)) // Interchange A[| and Alj11]

3 EndIf

6. j=)01 // Move to the next elements
7 EndFor

8 EndFor

9. Stop

Algonthm Swap (X. Y)

I temp=X Store the value in X 1n a temporary storage space
21X Y Copy the valuc of Y o X
3Y temp Copy the value m temp to Y

4. Stop

We have discussed the algorithm and this is the algorithm that you can follow swap method that
is required for interchanging that you can do. And another thing that you should consider here
we have mentioned that the bubble sort can be little bit modified it to sort the element more
efficient way for an input list when the elements define in an already in sorted order. Otherwise,
whatever with that base case what case ever is case sit usually takes order being kept but with
this modification the bast case can take only order of n time. That means with n number of
comparing that is require so little modification that we flag that you can use it.

(Refer Slide Time: 13:25)

<= Example 53.3: Programming for Bubble sorting

class CenericArraySorting<T extends Comparable<T>> {
Tal;

T gelDala(int 1) {
return a[i]:
}
void printbala() { A melhod Lo print Lhe elemenls in array a
; 1<adlenglh; i +)
oul.print (this.gelbala(i) + " ")

/! Conlinued Lo nexL...

So, we have implemented this version of this that means modified version of the bubble sort
where we use the flag here. So, now let us see there is again generic implementation this
implementation | have done in the same way in the previous one. So, we declare a class the same
the array we declare it here and this basically we will just create a constructor this a little bit
different way that basically same way we can do earlier also but it is basically we create the
array, initialize the array and then read the data that is okay reading the data. The get data
method you can call integer i and it basically return ai this basically if you want to print the data
like.

So, in case in print data method you will call it the get data. And this is the print method so this a
little bit in different way the algorithm you can follow the previous method also to define it. |
just make it twist little bit. So, this basically defined the generic class and finally I will include
the method here the method is the bubble sort.

(Refer Slide Time: 14:33)

<=_ Example 53.3: Programming for Bubble sorting

tinued on...

{

alj D;

swappad=true;
}

}

}

} // End of the generic class definition

The method is declared here this are bubble sort is included and here we used flag this indicates
that the flag is initially true that mean you have to continue the loop. But whenever we see that
there is no interchange so you can make the swap false. And then it can here if we do not enter
write false, then if we find any interchange you can make it true, initially it is true that we have
to repeat it and we just enter the loop we can make it false.

If there is no thing, nothing occurs here when it remain false that means that your sorting is done
all elements are already in sorted order. So, we have to quit the method quit the loop actually,
then it over. So, this basically the bubble sort, the logic is basically the same way that we have
discussed about that means we have to compare two adjacent elements. And then swap them if

they are not in order that concept is basically followed.

(Refer Slide Time: 15:35)

<=_ Example 53.3: Programming for Bubble sorting

And this code is an implementation of the same logic here and this is the master program that
you can consider in this master program just this is the one code that we have written there and
this is the main method this a input list and this is the integer array created. Then we print the
array, then call the bubble sort and then print the array. So, we can test the program again for the
different arrangement of the elements in ascending order all same, in descending order random
number will are set of numbers and then again try with different types integer, long, sort, float,
string, even user defined also you can think about it. So, this these basically the idea that the

bubble sort algorithm works for you.

(Refer Slide Time: 16:33)

Heap Sort Algorithm

Now let us another sorting technique, the heap sort heap sort is bit lengthy procedure but again it

is also good one and algorithm that we have a logic you have hope you have understood it.

(Refer Slide Time: 16:46)

<= Heap sort: Concept of heap tree

<=_ Heap sort: Concept of sorting using heap tree

Create heap
* Creale the initial heap tree with n elements stored in the array 4.

Fori-ndownlo 1 do
Remove max
* Sclect the value in the root node (this 1s the maximum vahue m the heap). Swap the
values (that is A[1]) and value at the i-th location in /.

Rebuild heap
* Rebuild the heap tree for clements A[1.2, .., 1-1].

Here array of integers needs to be stored as an input and this the procedure that we have to
consider, first you have to create heap so on routine can be written for that, then remove max is

basically deleting the root node.

(Refer Slide Time: 17:01)

Creste hesp

Acrsy representstion of the hesp.

<=_ Heap sort; Algorithm (Heap sort)

Read n clements and stored m the ammay A

1

2. CreateHeap(A) !/ Create the heap tree for the hist of clements m A
3. Fori=ndownto2do Repeat -1 times

4 RemoveMax(B. 1) // Remove the element at the root and swap it with the i-th

5 RebuildHeap(B. 1-1) // Rebuld the heap with the clements B1. 2. .. (1-1)], 121

6. EndFor

7. Stop

And then rebuild the heap. So, this algorithm is given there, this is basically the main sorting
method which basically call this are the sub method are there.

(Refer Slide Time: 17:10)

<= Heap sort: Algorithm (Create heap)

L5 Fasef // Initially. the heap tree (B) is empty and start with first element in A
2. While(1<n)do Repeat for all clements in the amay A
3 x Afi] Seleet the 1-th clement from the hst A
4 Blij=x ' Add the element at the 1-th place i the array B
5 Thad} &) is the current location of the element in B
6. While)~ 1) do Continue until the root is checked
1 10R[j] = B[}2] then It violates the heap (max) property
8 emp Bfj] Swap the clements
9 BJjj =B}y2]
10. BJj/2| = temp
1l j=j2 Go to the parent node
12 Else
13 11 / Satsly heap property. termmacs this mner loop
14 EndIf
15 EndWhile

=il Select the next element from the input list
16, EndWhile

7 Stop

And this is the create heap method.

(Refer Slide Time: 17:12)

<= Heap sort: lllustration (Remove max)

temp B[] Swap the clements L
Bl =Bl

Bl1]=temp

Stop

et —

And the remove max method is there.

(Refer Slide Time: 17:14)

<= Heap sort: lllustration (Rebuild heap)

1 M(=1)then
2[Rt No rebuild with sigle clement m the hst
. 45) Flse start with the rool node
4 flap=IRUE Rebuild is required
5. While(flag TRUT) do
6 leftChuld = 24, nphtChild = 2*41 ;
* Chioek 1f the right chald s within the range of hesp or not * ¥
Note: T night chld 1s wathm the rnge then also lefl child
IfnghtChuld 1) then
8 * Compare whether efl or right child will move o up or ot *
9. 16(B[]] BfleftChuld]) AND BflefiChuld] BlngbtChuld] then
Parcnt and lefl violate heap property
10 Swig B BllefIChild]) Swap parcnt and lefi child
1 1 lefiClld Move down 10 node at fhe next level
1 Else
3 T(Bf BlrghtChild]) AND BjrightChild] BllciiChuld] then
Parent and night violate heap property
" Swap(Tj], BnghiChild]) Swap parcnt an ight child
15) nghtChild Move down 1o node at the next level
16 Else ‘Heap property is not violated
" flag TATST
18 Endlf
19. FndIf
20 Flhse Check 1l the lelt clnld is within the rnge of heap or not

Continue...

<= Heap sort: lllustration (Rebuild heap)

2 T0(eNiChild < 1) then
2. 1(B[j] BflefiChild]) then Parent and left violate heap property
3 Swap(B[j]. B[leftChuld]) Swap parent and left chuld
n 1 lefiChald Move down fo node al the next level
2. Else Heap property is not violated
2. Nag TALST.
21 Endlf

8. Endlf
)

And rebuild heap method is there.

(Refer Slide Time: 17:17)

<= Example 53.4: Programming for Heap sorting (defining generic class)

¢ class Hin’h‘nr(T extends Comparable<T>> {
TI) fleap;

int size;

int maxsize;
private static tinal int FRONT = (;
public MinHeap (T[] arr , T node)

{

this.maxsize = arr.length;

Heap = arr;
Heap[0] = node;

Now here is a programming you can just took a based on the concept that we have discussed this
is the programming. So, programming again generic programming as you can see here this is the
declaration of generic class. This is a few fields we have declared, one is basically array where
the heap will store so this is basically data. This are total number of elements the maximum size

of the array actually that is fine.

And this are is the location is a point of front 0. Now we are considering mean heap the logic that

we have given is the max heap, again you can rewrite this code or rewrite this code so that it can

work for the max heap. | have intension give you that mean heap because in many of the book
only max heap is discussed. Now let us see the mean heap and how it works so this basically the

logic that you can think about how it works actually and that basically.

(Refer Slide Time: 18:20)

<= Example 53.4: Programming for Heap sorting (auxiliary methods)

This is a next part of the code here is the next part of the code the parent, this are auxiliary code
left child, right child it is required because the next part of the code that basically required which
is the parent which is the left child which is the right child is basically we are storing the heap
tree in the from front array as you have to move from any node to the lowest | mean towards the
children node or sometimes we have from the children node to each parent node so this kind of

method can be call for them and here is the logic.

(Refer Slide Time: 18:55)

<= Example 53.4: Programming for Heap sorting (auxiliary methods)

vale boolean isTeal (int pos)
if (pos >= (size [7) & pos <= size) {

return true;
}
return false;

And here is the program that is the next part of the program that you can think about and there
are few more code the is leap and then swap this a very simple code is a very logic is so simple.
You will be able to follow it.

(Refer Slide Time: 19:10)

<=_ Example 53.4: Programming for Heap sorting (auxiliary methods)

And here is the this is the print method how to print the heap, it is just printing an array that is all
nothing else. And this is the main code the mean heap, mean heap is basically just see the

minleapify for all elements so removing heap and then minheapigying is there and so this
basically the code works like that way.

(Refer Slide Time: 19:32)

<= Example 53.4: Programming for Heap sorting (heapify method)

And here is the detail scored about how the minheapify the routine is defined so miheapify
routine is basically the it basically called the heap tree and then it compare the elements and then
again call the minheapify that means it is basically rebuild t is there and if require there is swap
is there basically the logic that we have defined. So, this logic is basically a programming. So, it
is programming according to my style programming according to your own style something else

you can follow the algorithm better and then write the code of your own.

Now here compareTo method we are using so you can just overwrite the compareTo method
depending on how you want to compare say for new student. So, compareTo method can
overwrite there and student maybe one numeric field can be used to compare the two objects in
order so that automatically take care. So, you can take the previous discussion where | overwrite
the compareTo method for some student, the user defined object you can follow it here you can

add the code there and then you can run the programming again so that test it.

(Refer Slide Time: 20:38)

<= Example 53.4: Programming for Heap sorting (insert method)

arenl (curreni)]) < 0){

And so this is basically building the tree inside there.

(Refer Slide Time: 20:43)

<=_ Example 53.4: Programming for Heap sorting (remove and sort methods)

return sorted;

And remove code and all these things are there and this is the main method that is the sorting
method which basically remove the root node and then heapify it is there. Now this code is
basically in a fragmented way written in a basically. So, modular way the we have written the
code but again | am telling the, the code is choice of your own.

(Refer Slide Time: 21:09)

<=_ Example 53.4: Programming for Heap sorting (main method)

So, you can write the code according to your own choice. And here is the master program this
program basically see here what we are doing, we are defining the main method and this is
basically we call the routine here that means we have to create the minHeap of say size say 5
here. And then we consider an array of maximum size is 15 then what we are doing is that we are
storing we are inserting elements so this basically build the heap this basically building a heap
starting from the empty heap and initially inserting one element at a time so initially when we

create the node with array a.

So, basically we insert 5 and then we are inserting each element one by one. So, these are the
elements are inserted so the heap contains all this element 5 to 5, 3, 17, 10 in random order so
heap is created and then we just after create on heap we call the mean heap that basically the
heap sort method actually. And then if we print the heap it will basically print the elements in the
sorted order. So, this basically the idea about here the we store the array in the form of a

minHeap actually.

So, this is the code that you can follow it may take some time to understand the code but anyway
so you can run the code for different type of data. Here we have given the demonstration for
integer type you can took the running with long, double, sort whatever it is there and it will

work.

(Refer Slide Time: 22:54)

For details of the discussed Data Structures
sorting algorithms

See the book

Classic Data Structures
Chapter 10
Prentice Hall of India

And for many other discussions you can follow this book so that you can try to implement some
other sorting techniques those are there in this book to practice more. In our next part we will
discuss few more techniques there so that you can follow it, thank you.

