
Data Structures and Algorithms using Java

Professor. Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 51

Improved Sorting Algorithms

Right now, we are in module fourteenth and this lecture is in continuation with our previous

discussion.

(Refer Slide Time: 0:35)

So, today we will cover a few more sorting algorithms, mainly two sorting algorithms, the

Heap Sort and Radix Sort we will cover. The heap sort is very unique because it is a

nonlinear sorting techniques, but it store the data on an array. Radix sort is again a totally

unique sorting algorithms, where actually we do not have to do any key comparison.

However, it is a memory hungry sorting technique, but it is very fast, one fastest sorting

technique we can tell. So, today's topic includes these two sorting algorithms in details.

(Refer Slide Time: 1:17)

Now, so, we have discussed about insertion sort, selection sort and bubble sort in the last

video lectures. So, today video lectures includes these two sorting algorithm and other two

sorting algorithms we will be discuss in next part of the lecture. So, these two techniques is,

we termed as improved sorting algorithms, because somehow it works better than the

previously discussed sorting technique like insertion sort, selection sort or bubble sort.

However, the (previo) those are the sorting technique that is called a simple sorting technique

is the sorting techniques which known at the beginning and still it is basically an interesting

sorting technique for the students, because they can exercise their programming skill while

they try to implement this sorting algorithm. And they are simple because only simple data

structure that is used that is why they are called simple sorting techniques.

(Refer Slide Time: 2:22)

Now, let us consider the next version of the sorting techniques comparatively better than the

previously discussed sorting techniques.

(Refer Slide Time: 2:34)

First we will discuss about the heap sort. Now, heap sort we have discussed about while we

are discussing bit about heap data that is the heap tree a binary tree, it is called the heap tree.

(Refer Slide Time: 2:47)

And, we know a heap tree is a complete binary tree and it, the values that the different nodes

stores, it basically satisfies certain properties and there are two versions of heap tree, one is

called the max heap and another is called min heap. Now, this figure shows one heap tree, it

is called the max heap tree, a heap tree is called max heap tree, if each node satisfy the

property that the value of that node is greater than the value of any node in any of its subtrees.

Now, if we see starting from this, this is the node, the value is 95. And if we see its subtree

the value is greater than any value in the, in any of the subtrees actually. And another

important property that the heap tree satisfies is that it is a complete binary tree that means

before completing the final last level, it should complete its the last part one level. So, this is

come, this is basically it contains the maximum number of nodes that it in this level it is

possible before but this last level possibly maybe not fully complete.

So, this is a property that it should satisfy. And this property actually is an advantageous to

store a heap tree not using link structure rather storing heap tree on an array and then

indexing formula for from a parent node to its left child and right child that I have already

discussed. And another advantage is that in case of ordinary binary tree you can traverse from

parent to left but opposite way traversal is not possible. Whereas, if you store a tree using an

array and using that simple indexing formula from a given children, you will be able to reach

to its parents.

So, this is why this concept is very advantageous and array, it is the most memory efficient

on data structure, because we have to store data only anything else we do not have to store,

on the other end heap tree, you can manage the heap tree store any value, integer, string, any

object, user defined data type, whatever it is there. So, this way, this is the one best one what

is your data structure, which we can consider and that is why, the computer scientists gave

enough, what is called effort to develop a better sorting algorithm.

And, another advantage of this sorting algorithm is that it is efficient compared to the all

other sorting algorithm because the all sorting algorithm those are created as good sorting

algorithm, usually having the time complexity order of n login. So, this sorting algorithm is

also order of n login and that is to in all cases best case, average case or worst case whatever

it is there. Now, let us start discussing about how the sorting algorithm works.

(Refer Slide Time: 6:18)

And obviously, this require the concept of heap tree which you have already discussed, I do

not want to discuss the heap tree concept again. So, far the sorting is concerned your input, a

set of numbers, let the number n, n elements are given to you. So, what is the, first step is that

we have to first create a heap tree with n number of elements. Now, that creating heap tree we

have already discussed, while we are discussing about heap binary tree. Then next part that is

basically an iterative steps, we have to start from 1 to n. So, n number of loop, I mean loop

should roll for n times, so i equals 1 to n.

Now, in each loop in each iteration, the procedure is that you have to delete the root node.

Now, how we can delete the root node that also we have discussed while we are discussing

heap tree. Anyway, so heap node, the root node is deleted from the heap tree and this node

which is deleted from the heap tree is placed into the output buffer that is output list, then

once that root node is deleted from the heap tree, the second step that is required in the, in

each loop is that we have to rebuild the heap tree.

So, there are 3 major steps the first is that initially create the heap with the given elements,

then remove maximum elements, if it is max heap or remove minimum elements if it is min

heap which is a root node and then rebuild the heap. So, these are the 3 major steps those are

involved. And you will check that list that means input list and output list we do not require

two different arrays, in the same array where the heap originally stores will be able to store

output list there also. So, this way it is also memory advantage that no memory over it is

there. So, in case of memory constant application, this is really very good sorting technique.

(Refer Slide Time: 8:34)

Now, let us consider the idea that I have told you. So, this is the input list, list of n number

suppose and we just create heap. So, heap is a complete binary tree satisfying the heap

property that is either max heap or min heap whatever it is there. So, now this heap again, as

you know it stored in the form of array that we have already discussed. So, our next step is

that from this heap, we remove the root node. Now, how the root node will be removed, the

last node should be swapped between the root node and this node.

Now, so, this last node in the last level actually, that is what I should say. Now actually

swapping, this means that if you see in this array, the last node in the last level this element.

So, swapping this means, the root node which is there will come to here. So, this way if you

continue, and then once you swap this node that means delete the root node, then it may

disturb the heap property. So that is why, what we require is that we have to rebuild the heap.

Now, the procedure will continue considering that this node is sorted, then again rebuild, so

this is a rebuild then again the max node, this max node will be replaced by the location of

the last node that means this, this and then this is the maximum will be swapped and this will

continue and this will continue until the heap tree contains single node, whenever it contains

single node, this is a only node and this place is already fixed.

(Refer Slide Time: 10:35)

So, this is a procedure that we have to follow and for which the different, the algorithm is I

have already given an algorithm and here is a algorithm, this algorithm is the heap sort

algorithm. Now, as we see that there are two, I mean three procedure rather we can say create

heap from the list of elements which is stored in an array. So, in argument is an array and if

you pass this array to this procedure, it will build the heap tree that means, it will store the

elements into an array following heap property.

So, this is the input array, where is the random numbers and create heap will return the same

array, but elements are stored according to the heap structure, then the loop, the removed the

root and then rebuild heap when we remove root, it store the element in the output list in the

order, ascending order, descending order if you want to do it is in a min heap, then you can,

you can store the elements in descending order that later on can be changed into ascending

order whatever it is, there are little bit modification is that if we place a whatever it is there,

so, we will be able to do that.

So, now we will give an example about programming that how mean heap can be used to do

that, anyway. So, max heap is the convention, so that the elements should be automatically

stored in an ascending order. So, this is the procedure. Now, we will discuss about this

procedure that create heap remove root, remove node and then rebuild heap.

(Refer Slide Time: 12:20)

Let us discuss the different algorithm that we have given here. So, this is the algorithm that is

from a given list of numbers, how we can create a heap tree I have given the algorithm if you

understand the logic how it works, then understanding this algorithm is easy. And then once

this algorithm is understandable, then you will be able to write the program with your own

style. So, I always recommend that you follow the algorithm once your logic is clear, and

then try to write the code of your own, so that you can understand it better.

(Refer Slide Time: 12:56)

Now, so I should illustrate the example of how we can create a heap, that understanding is

important. So, this is a input list. So, this is stored in an, actually this is the array, the tree

structure can be set like this. So, this is a logically looks like, is a tree but physically it is

stored in the form of an array. So, this is the input array initially, we should forget about this

one not required. Now, from this array, we want to create heap. So, these store the same

array, but the ordering of the elements you see in a different manner and this ordering is a

logical structure of this heap tree.

So, root, then left child, then right child, left child, right child and each left child, right child

according to this indexing formula 2 star i, if the root is an i, then its left child is 2 star i, its

right child is 2 star i plus 1, this is the formula and for a node, it’s parent is i by 2 (())(14:03).

So, this concept is basically used to, I mean move from a root node to, from a node to any of

its child or from your child to its parent, whatever it is.

Anyway, so this is the idea about that heap. Now, let us have the few steps, so that you can

understand how this heap is created initially starting from an empty heap tree.

(Refer Slide Time: 14:26)

So, this you can consider 1st, this is the input list, 1st we will consider 15. And initially heap

was empty, so we just add these empty, we do not have to do anything. So initially, the 15

goes to in this array location. So, this is the only node and this is a root node, it does not have

any child, or whatever it is there. So, this is a first step that the fifteenth is added. Next, we

will see how 35 is inserted into heap. And so is, creating heap means take one element from

the input list, insert the element into the heap whatever, this procedure will continue until the

total, all elements are covered.

(Refer Slide Time: 15:08)

Now, let us consider the insertion of other nodes. So, we have added 15. Now, let us consider

adding 35, if we add here 35. So, 35 usually come here, but as they disturb the heap property,

so, what you should do is that we have to swap. Now, let us come to the 55. So, 55 will be

added here because it is in that portion. Now 55, if you add it, then it disturb the heap

property then we have to swap, so if you swap then this one. So, swapping this and this gives

you the heap with first 3 elements. Now, this procedure can be continued to further elements.

(Refer Slide Time: 15:56)

Let us proceed on few more steps, so that we can understand it better. Now, let next element

75. So, 75 should come because this level is free, I mean full, so 75 will come here. Now, we

should compare this node with its parent nodes, if we see that parent node is greater, then we

just go for swapping and this swap will continue till we reach to heap node, if require. For

example, here 75 and 15 we see that they are not in order. So, it should be swapped 15 will

come here 75 here, so initially 55 anyway, so this is going on and then 75 if we place here

and then initially it was 55, so it says that, it also does not satisfy the heap property. So, 55

and 75 should be swap.

So, from the point of insertion, if we follow the path from that node to the root node, then

only on that path only swapping if it is required till we see that the heap is not in order. So,

this gives you the heap structure this one and you see this follows the indexing formula to

store the elements into an array and this is the indexing according to that indexing the

elements are stored in this array. So, this is the logical structure and this is physically the

heap is stored in the array. So, this is, so if we continue this process again and again, I will

not be able to discuss all the steps in details.

(Refer Slide Time: 17:30)

Now here again 5, as you can see 5 is already in order, so no need to do anything because it is

root or its parent rather its parent is greater than the node itself, so nothing to do in this case.

(Refer Slide Time: 17:43)

Next whenever 95 comes we have to again check and from this node point of insertion we

have to go to the root and ultimately 95 will be placed at the root actually this is the largest

node in this case.

(Refer Slide Time: 17:56)

Now, again 85 same procedure, next 65 we will go to the next level again the procedure is

continued till we find that the elements are in order, that means its parent is greater than any

of its child and this is the intermediate heap. And finally, 45 is added 45 is added after 45

added it placed. So, this is a heap structure.

(Refer Slide Time: 18:25)

And finally 25, 25 we added and this gives you the final heap. This is the logically the heap

look like and all the indexing formula I have given you for your understanding, so that he can

understand. So, 1, 2, 3 this is its node, its left child, its right child, its node, left child, right

child, 2 star i, 2 start i plus 1, it is ith position then left child is 2 star i position and it is 2 for

any values appear.

Now here, one thing is you can note that the number of nodes which is required and size of

the array that is required is almost same we do not require any extra space or there is no

wasted or vacant space in the array, that is why heap is most compact I mean it stored the

data in an array in a more compact way we can say, no wastage of memory space. So, this is

about the, how we can create a heap.

(Refer Slide Time: 19:30)

Now, our next procedure that is the next step is remove the root node, it is we can say remove

max, it is a max heap, otherwise if it is a min heap, then remove min heap, anyway. So,

remove max that means removing the root node. So, idea is that removing root node is

swapping the root node with the last node in the last level. So, this is the last level and the last

node. So, what we can do is that? We just swap this node this one. So, as node last level, if

we, suppose up to this part we have already sorted, then these location of the last node in the

last level and then we just swap this is the location of the root node.

So, swap the element this one and this we automatically see up to this part list becomes

sorted. Then, for this part again we have to go for what is called rebuild the heap because

whenever we place the last node here, it may not satisfy the heap property. So, that is why the

heap rebuilding is required.

(Refer Slide Time: 20:41)

Now, let us consider how heap rebuilding is there now, this is a very simple swap procedure,

just okay, we have to, just induction that procedure is nothing to be discussed there. Now,

next is rebuild heap. Now, rebuild heap as I told you, so that from the position where you

have inserted the note, it just change the check that whether the parents is greater than or not,

if it is not greater than then swap the elements between the parent and that child and it will

continue until we see that parent is greater or we can, we reach to the root node.

So, ultimately this process will lead to you to placing the next largest node at the root

location. So, this way it tell how the swapping from current node to another node to go it is

just, in the chain order, so it is easy.

(Refer Slide Time: 21:37)

And, the algorithm that you can follow for this process I have given it algorithm is relatively

tricky, but if you follow it, you will be able to do it very quickly. 1st you should understand

the logic, then you will be able to understand the algorithm that will be better and then

finally, you can go for writing code. So, this is the algorithm that I have given you. So, you

can take your own time to understand this algorithm.

(Refer Slide Time: 22:01)

And when finally, I can illustrate the rebuild heap also, that procedure is simple.

(Refer Slide Time: 22:04)

Here, I gave an example where it gives a full illustration that means heap sorting, starting

from very beginning that we input list create heap, then remove and then we will repeat the

procedures last two steps. Now, here let us consider this example again this is the input array,

this is the create heap and after these create heap is there, we just remove the max.

(Refer Slide Time: 22:31)

Here remove max it comes to the location and it will continue then every time you see the

nodes are getting sorted and then they are placing the array and if we repeat these things for

continue.

(Refer Slide Time: 22:43)

Finally, all the nodes will be in a sorted fashion as you see here. And finally, the last node is

only node because all the nodes have been covered, they are virtually deleted actually, and

then this node is all placed in its location. So, finally, this gives you the output list which the

elements in sorted order in ascending order, if you consider remove, if you consider the max

heap. So, this procedure is the simple procedure that is there. Now, let us come to the

discussion of the complexity of the sorting algorithm.

(Refer Slide Time: 23:26)

Now, complexity of the sorting algorithm as you see there are, first of all we have to create

the heap. So, how much time it is required. So, first only 1 node, so only 1, second is 2, so

only 2, third is 3. Now if you see in each time the number of comparison that is required in

order to make the heap is, in the ith to be placed in log i. So, it is log 1 plus log 2 plus log 3

plus dot dot log n, if n number of elements have to be placed there. So, the number of I mean

the time complexity that is required to create a heap is we can say; is this formula that you

can consider log i, where i equals to 1 to n and simplification of this formula can give you n

log n. So, this is the time for creating heap in the first task.

Now each time if you remove that node from the heap and placing it, then again rebuilding

this procedure, again if you see it will take and ith loop the log i again because each time the i

number of elements are stored. So this, so second step is also the same as n log n. So, putting

these two together, so total time that is required is 2 n log n, and so the time complexity that

we can tell for the sorting algorithm is n log n.

So, this is the time complexity and this is very good, I mean time complexity, so far the

efficiency of algorithm is concerned, it is created as good sorting algorithm and whatever be

the case, base case for example, the element is already given to you in sorted order. So, best

case also whatever the step it is there we have to do it. Now, the average case also you can

see that it is also same, average case it is and then worst case also it is like, worst case may be

that you have to sort in ascending order by input is given in descending order whatever it is

there. Average case means when the elements are given to you in random order. So, this is

about the algorithm that is heap sort algorithm.

(Refer Slide Time: 26:16)

Now, let us come to the discussion of another sorting technique, the radix sort. Now, first we

should understand what we mean about radix, so every number system has its own radix. For

example, the simple most number system is called a binary number system, where only two

elements are there that is called the 0 and 1 and it is binary. On the other hand, decimal

number system, the number of digits, it is called, it is 10, that is why it is called decimal, so 0

to 9. This way the octal, the number of elements is 8, 0 to 8, 0 to 7 and is the octal system.

The hexadecimal system 0 to 9 then a b c d e f, so it is a 16 symbols are used to represent that

number according to that number system.

Now, if you can come to the screen, then there may be any alphabets is possible A to Z, either

small letter or capital letter. So, we can say that it has the total 26 different symbols are used

if we consider that case is not important. On the other hand, alphanumeric both stick both

numeric symbols in decimal system as well as alphabets concerned together total a number of

symbols that is equal to represent any elements any number or any elements we can say 36,

so that these called, number of symbols and in (differ) different systems, the radix is there.

So, radix may be 2 for binary system, 10 for decimal, 8 for octal, 16 for hexadecimal and like

this one.

Now, so this concept is required. So, that we can write use this concept to I mean sort the

numbers or any elements according to a particular system like. Now, the idea is that, so,

position of each, for example, in case of decimal system, unit position, then the tenth level

position, 100 level position, then 1000 level position these kinds of positions are there. So, it

will go up to the different; what is the size of the element numbers that you want to consider,

is a four-digit number or three-digit number whatever it is there.

Now, see the same is true for the binary number system also the first bit, it is called the least

significant bit and then the highest bit is called the most significant bit. So, that bit is starting

from LSB to MSB. Now, this actually the consideration is that if we take a simple unit from

the system, and then we can consider whether the system will be placed higher. Now, they

are actually the consideration is that we can plan according to the number system, so many

brackets then each bracket will consider to store the elements according to the order of the

position of the elements. Now, let us consider an example so that we can consider about this.

(Refer Slide Time: 29:38)

First we should consider a very simple numbering system, binary system that means, we want

to sort the binary numbers. So, this is first this is consider, this is a list of input numbers and

this is in random order. And binary number system, so the first number is the 0 0 0 this is and

then the 0 0 0 1 and it will continue 1 1 0. And this is the ordering of the binary number

system, so this is 0 and this is 16 or 15 you can say, this is 15, 0 to 15 actually, these are

numbers, according to the decimal form, anyway.

Now, here you see first, we will consider only two brackets we can consider, but I just want

to give an idea about how we can sort the numbers, and then they can be placed into their

corresponding brackets, I can consider two brackets, like here I am considering only one

bracket for an example. Now, what is the consideration is that, first of all, we will consider

the least significant it will go to that bracket depending on each value, if 1 then it goes to the

bracket 1 now in this binary system, only two bracket is required actually.

So, here we are sending this is the bracket start from here for 1 and this is a bracket start from

here for 0, let us consider this concept. Now, so this is there, now this is of last this bit is 1.

So, it goes to this bracket, so we place it here. Now, this is also 1 we go to the next, in the

same bracket, here only. Next this is the 0, so it goes to the bracket this one, so it is coming

here this is 0 it goes here again this is 0, so it goes there again, then again 1 this come here,

and this 0 this goes, this come here, this 0, this come here, and this 1 again this come here,

and this 0 it comes there. So, this is all numbers, if you see partially sorted according to that

first bit actually and here also all elements are sorted according to the first bit.

(Refer Slide Time: 32:17)

Now, again, if we can repeat the procedure, but this time with respect to the second bits.

What is idea? Idea is that now we will consider this position of the elements. Now 0, so we

will start with 0 brackets here. And, we can say that 1 bracket start from here. So, we can

actually take the two different locations for the two brackets, I am considering non location

for example, and so this is a 0, so it goes here and this 1 it comes here, then this is 1 again, so

these elements, so, these elements come here and this is 0 this means these elements come

there as you see it is coming there.

So, this one it comes here and this one also it comes here. Now, these 0, 1 0 0 1 it will come

here, this again 1 0 0 1 will come there, and this is also 0, 0 0 1 comes here and this is finally

here, it comes here. So, now, we can say that whenever we can consider the second position

of the bits, then all the elements are sorted according to this order. So, 0 0 0 0 0 1 they are in

this order actually the binary fashion. Now, repeating the same procedure, then but this time,

we will consider this bit, then this number will go to the next bracket, this is the next bracket

and this is the first bracket and 0 it will go to that this bracket as you see and this one.

So, ultimately the 4 different loops is required, if the total number of bits in the numbers is 4,

then this is first 3 and after first 4, we see all the numbers are stored in this order actually. So,

this is the smallest number, the next smallest number, the next smallest number and so on. So,

this ultimately get the sorting order. Now, the same procedure can be repeated for the decimal

number system.

(Refer Slide Time: 34:13)

Let us have a look of this system. This is an algorithm that you can follow later on, I am

emphasizing on the understanding about the logic algorithm that you can follow accordingly.

Now, this is an example that you can consider these are input list as you see and the input list

is in random order. Now, first we consider the first position, so these are the position. Now,

according to these position, the we can maintain yet nine brackets. So, this 136 goes to the

sixth bracket as you can see here 487 should go to the seventh bracket, 58 goes to the eighth

bracket and so on, so on.

Now, this height of the bracket should be considered in such a way that at the worst case, all

numbers he wants to go to one bracket then he can accommodate, that means if all numbers

have the same bit values, the same number, the same position values, then it is quite possible.

For example, if you have given all the numbers who the last digit is on, then it should go to

the bracket one like this one. So, this way, all the elements are sorted, you see.

Now, next what you should do is that, again we will consider all the numbers but considering

the second position of the bracket, so then 570, so this will go to the fifth one. So, 570 it goes

to the seventh brackets, and then 205 will go to the 0s position, then 136, it go to the third

bracket, so here. Now, the second if you consider then it will ultimately, then another loop is

required, because this is considered second, then third loop that if you consider, and here is a

third loop.

(Refer Slide Time: 35:53)

We can see in the third loop, all the elements are right from the second pass already elements

are there and if we take bracket wise. In this bracket, there is no element then this is the first

element, the next element in this order, and then these elements and so the you see these are

sorted order. So, this is the sorted list we can say if we collect all the elements, those are

distributed among the different brackets.

So, this one algorithm based on the principle based on the key distribution where no key

comparison is required. And we are not comparing key actually, we contrast to other

algorithm where key needs to be compared. Now, so this is idea that, watch for the radix sort.

Now, let us see how efficient the sorting algorithm is.

(Refer Slide Time: 36:40)

And this algorithm is the details and analysis of the algorithm you can follow the book classic

data structure, which I will refer it, so, the total time that is required to run the algorithm is

this one, these are constant actually depending on the total number of bits, and then decimal

system whatever it is there. So, this basically says that the complexity is order of n. Now, this

complexity of order of n is very less or other is less than any sorting algorithm that we have

discussed so far is order of n log n, and order of n log n is place is then order of n square. So,

this is the sorting algorithm which possible with the lowest time complexity and that is the

advantage that this algorithm is having.

(Refer Slide Time: 37:37)

Now, so these are the two algorithms that we have discussed about for the further study and

few more discussion you, I suggest you to follow these books in the chapter 10, so that you

can learn much more about in details according to your own level of understanding.

(Refer Slide Time: 37:50)

So, thank you very much. Thanks.

