
Data Structures and Algorithms Using Java

Professor. Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 47

Linear Searching Algorithms

Many aspects of several data structures have been covered so far. Now, we will discuss about

some algorithms which are extensively used on collections. Those collections easily can be

stored in the form of an array or linked list or trees or whatever it is there. Now, we have also

learned few algorithms in this regard, while we are discussing the different operations in

order to manipulate the data structure or data in a given data structure.

Now, we will discuss in this module some algorithms which are related to some operations,

of course, but we will give a specific algorithm those basically have received many attentions

from the computer scientist to improve the best algorithm for the purpose, it is related to

searching. So, our today's topic is basically searching algorithm. So, we will discuss the

different concept.

(Refer Slide Time: 1:44)

We will discuss the different concepts related to the searching, different searching techniques

and there are varieties of searching techniques are known. So, in this class we shall discuss 3

important searching techniques namely sequential search, binary search and interpolation

search. So, today it is our plan.

(Refer Slide Time: 2:18)

Now, let us start about discussing the different searching techniques which are known till

time. This topic in fact very vast, because since the inception of computer particularly the

programming, there are many computer scientists have evolved with many algorithms. Every

algorithms have their own benefits as well as certain limitations, but still there are process is

on so that we can have better searching algorithms.

(Refer Slide Time: 2:52)

Now, let us see the total story of several searching algorithms which have been right evolved

till time and I have given a taxonomy of different searching technique, different searching

technique actually follows certain principles. Anyway, whatever the sorting, searching

techniques are there, they can be broadly classified into 2 categories, they are called internal

searching and external searching. Now, external searching, when data is stored in memory,

but it is in secondary memory. It is in hard disk like or floppy or some external storage

devices like tape whatever it is.

On the other hand internal searching techniques when data first loaded into your computer

memory and then you apply search algorithms. Now, in this course, we will limit our

discussion to only internal searching techniques, because external searching techniques needs

the different treatment which is beyond the scope of this course. Now, again internal

searching techniques, those are available can be broadly classified into 2 classes, they are

searched with key comparison and another is searched without key comparison.

Now, so searched without key comparison means, basically we will not record to compare 2

keys while we are searching for the target key. So that is without key comparison, we will

discuss how searching without key comparison can be accomplished. The next research with

key compression. In this class, there are several searching techniques are known. Now, again

also searching techniques belong to this category can be broadly divided into classes, one is

called linear search, another is called non linear search. There are many techniques belongs to

linear search, namely sequential search, binary search and interpolation search are the 3 most

important searching techniques which are called searching technique belongs to that linear

search.

Now, again nonlinear searching techniques there are many. In case of linear searching

techniques, we usually store data into a linear data structures, linear data structure means

maybe array or linked list. On the other hand, for the nonlinear data structure, the data are

stored into a nonlinear data structure like tree or graph like this. Now, so if your data is stored

in tree type data structure, then different searching techniques can be applied to which are for

example, binary tree search or it is called the binary search, tree search, the AVL tree search,

red black tree search, splay tree search, a digital search.

There are certain other searching technique where in lieu of binary it is the multi way

searching. So, this is called the MA searching for example, BT search B plus T search in

general they are called MA tree search. Now, again the data is typically stored in the form of

a graph, some searching technique also can be applied, 2 searching techniques are very

popular like depth first search and breadth first search. So, there are so many searching

techniques are known.

(Refer Slide Time: 7:07)

However, in this course, it is not possible to discuss all the searching techniques. If you are

interested to learn different searching techniques including external search and whatever the

searching technique, then I should suggest you to follow the book Classic Data Structure

chapter 11, where a thorough discussion about all searching techniques have been given. So,

those are interested students, they can follow this book for their further studies.

(Refer Slide Time: 7:42)

In this course, as the time is limited, so we shall limit our discussion to only a few important

searching techniques. I have mentioned what are the searching technique that I will cover in

this course here. So, first of all searching technique with key comparison belong to this linear

search and nonlinear search. Under the category of linear search, we will study about simple

linear search, binary search and the interpolation search. Then, in the category of nonlinear

searching technique, we will discuss about binary search tree search and then Fibonacci

search.

Now searching without key comparison, we will discuss one technique, address calculation

search. Address calculation search basically follow the hashing concept which we have

already covered while we were discussing mapping. But here in the context of simple

searching, we will discuss this concept. So, this discussion will complement already learned

discussion while we were discussing regarding the mapping and tables theory.

So, these are the plan for this module, we will discuss different things, some portions will be

discussed in today and some other parts in the next class.

(Refer Slide Time: 9:03)

So now, let us consider about linear searching. I told you linear searching is applied to data

structure of type linear. So, if you store the elements, elements can be anything, it can be a

number like integer or floating point number or sort, whatever it is, it can be string, it can be

character, even it can be user defined objects of any type, but they are essentially stored in the

form of an array. Now array we have already studied that can, that array is supported by

means of different collections as we have already learned like arrays, array list, vector and so

many things are there.

Even in your program also you can define your own array. So, whatever be that, the

collection is basically stored in the form of an array and it is if we have to search an item

stored in the array, then we can say that it is that linear searching techniques.

(Refer Slide Time: 10:13)

So, data is stored in an array, there are now the proper question that arises is that how data are

stored. Now, data can be stored in 2 different ways, one is that it is in order. Now this order

may be in ascending order or descending order or some order. On the other hand, the data can

be stored in a random order, no ordering. This is the one of possibilities that how data is

stored. Now, that can, this kind of whether it is in random order or ascending or descending

order, it can be stored in the form of a linear data structure.

Now, there are 2 versions of linear data structure, one is called array and another is also

linked list. So, you can store the data into a linked list also in a random order or it can be in a

particular order, maybe ascending or descending order. So, depending on the type, obviously

data structure matters as well as arrangement of the data matters, different algorithms is

possible.

(Refer Slide Time: 11:18)

So, let us first discuss about the sorting, searching of data which is stored in a linear array and

we will first consider the data stored in a random order. As in this example, we can say this is

basically an array of integers and as you see the number integers are stored in a random order.

Now, the algorithm that we can follow, which basically is shown here in this flowchart. Now,

here the data is stored in a random array and we have to find one item or elements if it is

stored or not.

So, so for example, the target key is 9. So what we should do, we should start from this

position this may be 0th location or first location, whatever you can say. So, here in this

flowchart it is again that first location is location I1. And now, we have to start with it and

then we have to compare whether that target key that is our 9 is located here or not, if it is not

here, then this pointer will move in this direction.

Now, if we traverse the entire arrays and the item is not found that when we reached here,

then we can see the search is unsuccessful. Otherwise, if we find some element, which is

here, then we can see the search is successful and in which location the element is available

or present, it can be returned. So, this fact is depicted using this flowchart. So, this is very

easy to understand if you start with you will be able to follow the logic that I told you how it

can be done.

Now, so this is the concept that searching with key comparison and it is a linear data stored in

the form of linear data structure like array and data are stored in random order. Now, we can

extend these things writing an algorithm.

(Refer Slide Time: 13:27)

I have written an algorithm for you, if you follow this algorithm, which is given in this table,

it will be easy for you to write the code. So, writing the code for this particular linear search

is very trivial, anybody can having some programming aptitude they can write this. So, I

should not discuss about this programming, whenever I come to the programming of different

searching algorithm there I will point it out. So, now you can go through this because it is so

simple that no need for further discussion.

(Refer Slide Time: 13:53)

Now, let us consider the another case where the data is stored in an array, some numbers for

example, and it is already sorted in ascending order. So, like the previous searching

algorithm, it is basically same. Now here we start from the first location. So, this is the

starting location and the target key needs to be compared. If it is available here, then we will

stop it here, we should not go past that. Otherwise you will scan it and if we do not find the

elements here, then we can reach here at the end of the array, giving us the search is

unsuccessful, otherwise search is successful.

Now idea is more or less similar to the previous algorithm. But here actually, so here if you

find the element or if you see that your element, which is the element that you want to search

is already exceeds the limit. For example, you want to search a 5, for example 5. So, we can

start we can start from here, we can reach here and then we can find that 5 is available here.

Now, suppose we are searching for some numbers say 3.5.

So, we can start again 3, now whenever we come 4, we can say that moving this direction

will not be fruitful, because the element that we have searching are not possible to be here

because we have already crossed the limit. So, because 3.5 should be here in this side only,

not in this side. So, we can stop the searching. That is the only difference from the previous

one and this one.

Because in case of previous one, as data was in random order, we have to start searching

whenever it is available or not available. So, this is the only difference that you have to take

care in this case and accordingly, you can decide the algorithm. I have given an algorithm for

you, this is a flowchart and then the algorithm is you can follow this algorithm. The same

algorithm simple logic and it is easy to implement writing program will not be a big issue for

any programmer.

So, this you can try to write a program, storing the elements in an array and in a sorted

fashion and you can repeat the same thing starting with ascending order as well as descending

order. Logic will work in same way, but you can check it, if the data is stored in ascending or

descending order whatever it is there. So, you can just have the idea about simple linear

search, it is really simple, because idea is so simple and logic is also not so complicated and

you can do it.

(Refer Slide Time: 16:45)

Now let us come to the analysis of the searching algorithm. So, what is the time complexity

or the running time that is required? Now, we are assuming that data first of all stored in a

random order in an array. So in the best case, so this is a case one which we can see the best

case. In case of best case, that total time that is required you can say one unit, I am telling

unit because it is basically only to search the first element and stop it there are assuming that

the element that is your target element is available in the first location itself.

So, this is the best case or ideal case of course. Now, on the other hand, suppose the element

is not present in the list then you have to traverse starting from 1 to n. So, total cost of

traversal is basically you can say n unit or you can say the total time complexity n. And on

the other if k is present, but if k is present, it can be located at any position. So, if it is

available at ith position and pi is the probability that the element will be in ith position, then

we can say that this is a total time that is required.

Now, so now, we can take the summation for i equals to 1 taking the average. So, it will give

the average time that is required, assuming that P 1 to P 2 n are equal probabilities, that

means element, probability that the element will be located at any position are equal

probability. So, then we can say that all probability values are 1 by n. So, this calculation

therefore, can be calculated in a simple, is that n plus 1 by 2. So, on the average half of the

elements needs to be moved or traverse actually, this is the best the idea actually there.

So, these are the 3 different cases. This is the best case, this is basically the worst case and

this is the case it is called the average case, on the average it will take like this. So, over all

the complexity that actually time complexity what you can say is it is the order of n, actually

that is the asymptotic complexity. Now, I have listed all the asymptotic complexity in this

table for your summary, you can follow it.

(Refer Slide Time: 18:57)

So, the case 1 that is the best case as I told you, T n equals to 1, then complexity it is an

asymptotic complexity notation or big O notation it is called. If you are not aware about that

big O notation, you should have this concept actually, any algorithm book can be consulted

including this Classic Data Structure also you can follow how to express the complexity of an

algorithm that is called synthetic complexity. There are many notations, big O notation, theta

notation, big omega notation, small theta notation like this.

So, that actually I advise you to go to a special chapter 11 there and you can find the

complexity notation for the different algorithms that you can have. Now, anyway so this is

the T n in big O notation order of 1 because it is required constant time whatever be the size

of the array, it is constant only the fixed time it is required. But other techniques whenever

the other cases are that based, other than best case that means worst case and average case,

the complexity is in the order of n.

This means that that time, running time of the algorithm will increase linearly as the number

of elements stored in the array increases. So, this is basically linear time complexity we can

say. So, these are the complexity analysis, details how these complexity analysis can be

calculated that you can follow the book Classic Data Structure for detailed discussion. So,

this is the idea about the simple linear search, rather we can see simple technique.

(Refer Slide Time: 20:32)

Now, let us come to the discussion about again another linear search technique, but when the

data is stored in a into a linked list data structure. We are already familiar to linked list data

structure and possibly we have discussed about the search operation there, we defined one

data structure called linked list where we defined many methods insertion, deletion, possibly

searching also included there also.

Anyway the same concept is there, it is similar to the linear array because like this, but we

have to traverse not consecutive memory location rather to traverse to the next node

depending or following the link that is maintained by the previous node. So, this is the

concept which is there. Now searching it will take place as usual starting from the first node

you can first check whether your target element is present here or not if not present here, then

we have to move in this direction and we have to repeat this until we find the element in a

particular node or we reach to the end of the node, I mean end of the list rather we can say.

So, in this case the searching is unsuccessful, otherwise searching is successful. Again, we

are assuming that data here stored not in an order, it is in random order. So, this is the basic

technique and then an algorithm also you can follow.

(Refer Slide Time: 22:06)

This algorithm is given for you, so that you can implement this algorithm the same algorithm

we have possibly implemented while we are discussing about the linear data linked list

structure. This algorithm you can again pretty simple that can be implemented easily.

(Refer Slide Time: 22:20)

And when that data are stored in an order, assume that in ascending order how the algorithm

works, it is mentioned in this algorithm, this algorithm you can follow. It is basically the

same as the linear data structure with array that we have discussed, start from the first node

and we can move to the next depending on 2 conditions. One condition is that element is not

found or element is less than the target element that is we are going to find it. So, whatever it

is there we have to continue.

And we stop under two situations when we found the element there or we reached to the end

of the list. So, these are the condition and this algorithm is basically ported the same concept

and you can follow it easily, this algorithm has English like sentence not exactly in Java

programming syntax, but you will be able to easily convert this into Java programming

syntax. So, this is again writing program for this is left as an exercise for you so that you can

practice it.

(Refer Slide Time: 23:25)

Now, here the time complexity for this purpose as you can see is similar to the previous one.

So, this is the best case is a fixed time. This is basically the average case, as a unit of n plus 1

by 2 half of the least to be traverse actually in general and worst case, this basically either

element is available at the last node or is not available in the thing. So, that worst-case is this

one. So, this is the time complexity. So, what we can say the time complexity for linear

search and your linear search technique with array and with linked lists are almost same.

So, they are a similar complexity. That means we can say that the algorithms which we have

considered for searching over an area or overlaying are same level of complexity or running

time will be almost same. And in both cases it will be basically proportional to the number of

elements stored in the data structure. Now, so we have discussed the different searching

technique, linear searching technique rather when data stored into a linear data structure,

linear data structure namely array or linked list.

(Refer Slide Time: 24:42)

Now we will consider another better searching technique. It is basically the same that element

is stored in an array. We can apply the same thing on the linked list also, but popularly this

technique is applied to data structure when data stored in an array data structure. And another

condition we will follow for the searching technique is that elements are stored in an array

and already in sorted order.

So, if the elements or data is stored in an array and in sorted order, then we can devise a

better searching technique, which will work better than the linear searching technique that we

have discussed. Now, let us follow the techniques that we are going to learn about how it

works actually.

(Refer Slide Time: 25:36)

So, the idea it is like this, it is already sorted. So, we know that first location of the list and

the last location of the list. So, past what we should do is that we have to hit at that middle

location. So, hit at the middle location means which is at the middle position of the array.

Now, your target key can be compared with the element which stored in the middle position.

Now, two situations will occur, one is that element is present, therefore matches, so stop the

searching.

Another thing is that element does not match with them elements which is at the middle

location. Then what we should do we can repeat the same procedure but not on the same

array, rather on half of the array. Now, which half you have to decide that whether the

element the target element which is less than the element which is at the middle or is greater

than which is at the middle. If the target element which is less than the element at the middle,

then we should start the next part of the location.

(Refer Slide Time: 26:50)

So, this part. So, in this part we will search it. On the other hand if the target element is

greater than the element which is presented the middle location then we should search the

element are the rightmost part of the list.

(Refer Slide Time: 27:06

So, it depends on that target element and this procedure will continue until we come to a list

which is no more splitable, I mean we will not be able to divide into 2 parts, that means it

contains only one element or you already find an element that means matches soccer. So this

is a case that you can think about it. So, each time you split the array into 2 parts, at the

middle compare, then either check the left part or right part depending on the number that

you are searching. So, this basically the idea about the binary search technique.

(Refer Slide Time: 27:55)

It is very popular searching technique. The algorithm, the procedure that I told you is stated a

more systematic manner in an algorithmic fashion. So, this algorithm is pretty simple. And if

you follow will be able to understand how this algorithm actually work. And finally, writing

program following this algorithm is also very simple, it is not a tedious job, it is also advised

to you that you can write, try to write the program based on this algorithm. So that you can

practice much better and learn the concept much better.

(Refer Slide Time: 28:33)

Now, the complexity analysis. The detailed complexity analysis is a very difficult job. I will

just tell you that binary search basically follow a recursion tree like this one. So, this is the

middle location then if you find it, if you find it stop here, if it is not find it and the target

element is less than then you go there and so on so on. So, this basically the idea about we

have given the idea about what are the elements of size 10, I mean array of size 10 and then

how it will occur.

So 8, depending on the failure case, otherwise a few find it the equal cases is there. Now, so

this is the idea that is the there. So, it basically is a tree and so whenever you search, the

longest path that is in the tree is basically total complexity. And you know this is just like a

binary tree and the longest path that is possible and it is almost height balanced tree you can

say. It is basically height balance or we can say in this case for example, it is a complete

binary tree.

So, complete binary tree is good for minimum height that you already know. So in this case,

the height will be the maximum path length that is possible and which is basically log n, if

the n number of nodes are stored in that tree like. So, this is basically log n and considering

these things, the search complexity of this binary search tree is basically order of log n.

(Refer Slide Time: 30:04)

Now, and in case a best case means if you find element which is present at a middle location.

So, only one probe required, the best case is basically this complexity and the worst case is

basically this complexity. And a recurrence relation that we can write, recurrence relation is

basically the, this is the task that is required to find a location, that means middle position of

the list. And then once you calculate the middle position, you can stop it or you can continue

the same thing but with the half of the list.

So, recurrently this expression can be says that Tn is equals to 1 plus T n by 2. Now we can

express this again this is basically 1 plus 1 if it is not found in the either left part or right part

then you have to repeat it again. But in this case, your repeat will go on for the one fourth of

the list. So, each time as you progress, so number of size of the part of the list is reduced.

Now, if you suppose not available in the one fourth of the part, then we have to continue

again.

So now, next again so recurrently we are resolving then in that case it is basically, so T and it

will go n by 8 we can say, so in by 8 means you need 2 to the power 3. So, it is 2 to the power

2, 2 to the power 3 and if we continue this way, so 1 plus 1. So, it is up k, k number of 1 up to

k kth 1 and the next will be T n by 2 to the power k. Now, the boundary condition is T 1 that

is possible when n equals to 2 to the power k.

So, suppose n equals to 2 to the party then what you can write is there 1 plus 1 plus up to plus

kth 1 plus T 1. Now, here T 1 is equal to 0 so we can stop it here. So, we can say that this is

equals to k because the k number of 1s are there. Now here, so k equals to, this is equals to

log 2 n. So, this is basically we can say the complexity is log 2 base n. So, this is the time

complexity which is written here basically, but it is taking the floor, so log 2 n plus 1.

Because here we assume that n is exactly divisible by 2 or is a power of 2, but it may not be

like that. So, if it is not like then you have the complexity like this one. Now, here we assume

that n is exactly a power to actually. Anyway so this basically gives an idea about the time

complexity this one, now log 2 n. Now you compare the searching algorithm that we have

discussed when data is stored in an array using simple linear searching technique, it takes the

order of in.

So is basically, so this algorithm the complexity of this algorithm we can say order of log n

and the previous time complexity that we have discussed is order of n. Now, actually this

order of n, this is greater than this one, that means this algorithm is better than this algorithm.

So, this is the idea about the sorting technique, searching technique and binary search

technique that we have discussed.

(Refer Slide Time: 34:14)

Now, let us consider the another searching technique it is called the interpolation search

interpolation search is basically an improved version of the binary search technique. In this

search technique, the difference between the binary search an interpolation search is that

almost a technique is same, but in case of binary search, we have to hit at the middle element,

s elements at the middle position. But, but but in case of interpolation search, it is not exactly

the middle basically we have to hit at the position which is very close to the target element if

any.

So for example, you have to search for say 7.5. So, in case of binary search it will probe here

but in case of interpolation search, it will probe here. So, this that the number of iterations or

parts that is required only parlays in case of interpolation, then the binary search technique

actually. So, this is an improvement. Now, let us see how we can prove which is very close to

that target element actually. Now, so in this regard there is a interpolation formula

calculation, interpolation formula is there, so we can follow this interpolation formula and

can apply it.

(Refer Slide Time: 35:32)

This interpolation formula to check that which is the possible location which is very close to

the target key. So, k is the target key and Kl is the basically the bound in the lowest one and

U is the upper upper one. So, in this series this is the K l and this is the K u and any elements

basically your target element that you want to find, whether this is there in the list or not and

u minus l is basically location.

So, this is l and this is u. So, this formula can give you to find for a given key which is the

nearest location that we have to probe or hit. So, this formula is basically important and based

on this concept, otherwise, everything is same as binary search algorithm. Only that problem

is that here we have to calculate the position where we should hit instead of pretty simple

location the middle location that is followed in binary search technique.

(Refer Slide Time: 36:31)

The algorithm that you can follow it is there. The algorithm is written here, you can follow

this algorithm same algorithm only this party is different, the calculation, here not middle hit

actually the interpolation location calculation other other parts are the same.

(Refer Slide Time: 36:44)

Now, so far the complexity analysis is concerned, detailed complexity analysis you can

follow any book, Classic Data Structure also you can consider you can find a detailed

discussion. If the element present in the list, then depending on the best case worst case and

average case time complexity will be like this. And if it is unsuccessful, then this is one. Now

we can say that these complicity is on the average is log 2 n, now which is very very less than

log 2 n actually. So, this means that this algorithm is better than the binary search algorithm

that we have discussed. So, this is the better algorithm and a program you can write it.

(Refer Slide Time: 37:25)

`While programming we will discuss while we will discuss these technique details there,

programming list will be discussed in another class. Now, I have given a big comparison

about the different searching that we have discussed about. Now, as we see, the searching

over a list, either linked list or it is in maybe all elements are stored in an array, we can

assume that it is in a sorted array because the interpolation require that elements should be in

sorted order, binary search also require that elements should be in sorted order.

Now, here we can see if we follow the linked list that as the time increases, I mean the

number of elements increases the complexity increases x increases actually. If it is not

exponentially, but it is increases with time. On the other hand, this algorithm is basically the

algorithm for, so this algorithm is basically the interpolation search and this is the time

complexity that is required for the binary search. As we see the interpolation search takes

little bit more time than the binary search.

And in this binary search is very fast actually, although complexity is to log 2 n this is

because in case of interpolation search, address calculation is basically is heavy that is how it

is taking time. But anyway both the algorithms are comparable and it takes more or less same

time and you can see that we as the number of elements increases, it does not increases

exponentially as it increases for the list over the search it is there. So, this way we can just we

can take we can see that which search algorithm is better and that is why interpolation search

is not so better because of this address calculation.

However, binary search is the best searching algorithm so far the linear data structure is

concerned. That means if you store the data in the form of a array or in a linked list, you can

follow the linear searching techniques. Now I have given some basic concept about the linear

search techniques when that data is stored in an array or linked list. There are a few more

techniques also available in this book. I suggest you to follow the book for further studies.

Thank you very much.

