
Data Structures and Algorithms Using JAVA

Professor Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 43

IO with Byte Streams

In this video, we will learn Java’s most significant one features dealing with input/output. It is

the bytes stream, byte stream for input/output.

(Refer Slide Time: 0:48)

So, today we shall learn about the facilities regarding this byte stream input/output. We have

already discussed about there are several classes dealing with input byte stream byte stream

mechanism. So, we will discussed about these mechanism related to input and output. So, let us

first discuss about the different classes that those are available to support the input/output

mechanism, in this category; there is a byte stream class.

(Refer Slide Time: 1:30)

So, there are input stream and output stream, these are the basically abstract class, which is

defined in Java dot io package. Input stream this class is basically support any sort of input using

byte stream mechanism. On the other hand, output stream is basically another abstract class,

which will basically to support output byte stream.

(Refer Slide Time: 2:11)

Now, so for the input byte stream class is concerned, there are many what is called the classes

are available. And so here the main concept that is there in bytes stream class is basically the

source, which will basically available to a program. And then interface between the source and

the program is basically input stream arrays from program to a destination; it is called output

stream.

Now, in this picture as you see a program can read data from a source as input, and there will be

the flow of input data in the form of raw bytes. Whereas, the flow of data that occurs from

program to output is again in the form of bytes. So, there is called bytes stream, so you can say

that raw data; so, here the flow that will occur from this source to this target. So, this flow is

basically is supported by some what is called the interface program.

Similarly, here the flow of data from program to output destination is supported by some

interface mechanism. This interface is nothing but some programs, so here the programs are

already been developed by Java developer. We want to use this program to handle both input

stream as well as output stream. Now, so far the input stream is concerned there are several

classes, as well as output stream is concerned there are again several classes which are the

different classes those belongs to input stream and output stream; we have certain familiarity

which we have covered in the last video.

So, today we will see the programs those are there to support reading and writing in details; and

will discuss all those things with examples.

(Refer Slide Time: 5:18)

So, we have already mentioned input stream to read data from the input source to program. The

output stream classes, there are many classes like such belongs to these output stream; they are

basically mean for writing bytes from program to output destination.

(Refer Slide Time: 5:48)

Now, let us learn about the different things those are here. There are many but it is not possible

to cover so many classes; but their concept basically same will emphasize two such interface

mechanism. One is called the file input stream, this is for input; input from data source we have

programmed.

And here data source is basically a file, the file contains data; program wants to read data from

the file and that reading is basically as a byte stream. Similarly, file output stream class is there,

here the program wants to write something into this destination; that means output destination

which is basically a file. So, we will try to understand about this file input stream and file output

stream in details and other input stream classes and output stream classes which are there; they

are basically more or less similar.

So, those things I will give you the materials, the link to the materials; so that you can go through

and you can study but, if you understand this file input stream and file output stream; then other

things easy to study because they are basically same, only the thing is that we have to make a

connection to that particular resource; basically which represents different type of source or

targets for the data.

(Refer Slide Time: 7:41)

So, let us discuss about Java input stream classes, and this input stream classes can help you to

read data from different type of source. Different type of source as I mentioned you file is one

important source; other than file you can read from any other buffer. You can read as an input

source as a standard input device like keyboard; that is also an input source of data. Maybe

another program or it can read from a from an array which stores data; this is called the byte

array or you can read something from a pipe; pipe basically contains some information, so you

can read like this one. So, let us see about different type of classes those are there.

(Refer Slide Time: 8:36)

So, I told you that input stream class is basically the abstract class, and all other all other classes

are the subclasses of this input stream class. Here, I have listed those are the different subclasses,

so the first is file input stream; here the input source is basically a file. The byte array input

stream, here the input source is an array of bytes, where data is stored in an array, array is of

types bytes; you know array means is a collection maybe also.

Then filter input stream is one mechanism, it basically helps you to data converting from byte to

a primitive type data. Now, piped input stream is basically useful for threading; where multiple

threads can run together where thread can communicate, that means one thread can produce data

that is other thread can consumes that data, so the data which produce is basically output stream

piped output stream.

And another thread which consumes is basically called piped input stream; so, there are two

streams, it is input stream and piped input stream. Now, object input stream is very useful, when

you want to store directly an object to a through it’s; when you want to read an object from a

source. Maybe objects are already stored in a file and you want to read the object. So, how the

data reading that means reading objects and flow of bytes corresponding to the data relevant to

objects. This is basically handled by object input stream.

Now, there is data input stream, this class is useful for reading data from standard input device

mainly but here actually main concept is that with this input stream class, you can read data;

although it is stored in a byte but, to you it will store in the form of a primitive data. So using this

class, you can read as an integer, read as a long, read as a stream like this one.

Now, buffer input stream is basically one mechanism, which makes the input mechanism input

reading faster, that means it basically stores data from an input source, but is a buffered actually.

So, data will be from input source, but it will store as a buffer; from that buffer the program will

read.

This is because the data source and then program may not of the same speed; so if we do the

buffering, it will basically make faster. Now, pushback input stream is basically sometimes it is

required that in all these classes, actually if you read data from an input source; then it will

automatically skip the data to the next available data. But, in case of pushback input stream, it

gives you an idea about after reading data; you can return the data into the source. So, that you

can read again, there are many situations when the reading data and returning data to the input

source is required.

So, if you want to read then the pushback input stream is useful for that purpose. Now, so these

are the subclasses or the class input stream; input stream class is basically is a is an abstract

class, which is defined in Java dot io package. Now, being an abstract class, this class defines

many methods; now those methods are ultimately implemented in all these subclasses. So, this

means that the all the methods name or the argument types same; those are there in different

classes like these are. They are basically same but their operations they are different; those

operations are implemented by the Java system.

So, you can just use it, not necessary to bother about how those things are implemented. This is

up to the implementation details and that is at the system level. Now, so this basically the input

stream class; now let us discuss about the different classes in details that we have discussed.

(Refer Slide Time: 13:35)

So, as I have already told you these are the different classes, which are basically subclasses of

the input stream class. And each class basically treat the input source in different way; and these

are the different classes meant for different type of input source.

(Refer Slide Time: 14:06)

Now, I told you the different methods, so these are the different methods, which are declared in

the input stream class.

This basically the method available, this means you are reading a data from an input stream; that

is our input source. So, how many bytes are remaining or available that can be learn calling this

method available. For example, file is an input source, so what is the number of bytes available

for further reading; so this available. And close method this basically used to close the stream;

then mark, you can mark the data file you are reading that basically helps you comeback to the

same position if required; so that mark.

Now, all stream may not supported the mark marking procedure; for example, buffer input

stream may not support you. So, in that case we have to check whether this input stream can

support the mark or not. If it is not there, then you will not be able to have these facilities; so this

method can return you whether a particular stream can help you mark supported or not. Now,

these are the read method, three read method; this will read one byte at a time this read basically

array of bytes, so this is bulk reading. This read also bulk reading, but starting from a particular

position to a particular.

So, depending on you can specify that how many bytes you want to read, and then you can

mention it so that it will read in this byte array with a specific part of the byte array can be read;

and that can be stored into this bit. It basically return byte array, this also returns a byte array;

this return a byte. Now, reset as you see this is mark, if you sometime want to reset the mark; so

it can reset to the very beginning of the of the reading. Then the reset method can be called and

the skip method you know; so if you want to skip few bytes to read, then you can use it skip.

So, these are the different methods those are there; these methods are declared in input stream

class. And all other classes that we have mentioned they are basically subclass of the input

stream class. This means that all these methods are inherited to the subclasses; so, this means all

those methods are there. So, whether it is reading a file or reading a buffer or reading an object

stream; so no problem only read method only for you. Now, so these are the methods, those are

there.

(Refer Slide Time: 17:22)

Now, as I told you this input stream classes basically use to read bytes; so it is basically one byte

is 8-bit information. And using those classes for a given input source; you will be able to read

byte-by-byte. A stream can be closed particular position of a stream can be mark; we can skip

some bytes to read. You can find how many bytes are available and so many; those are basically

as mentioned in the method declaration.

(Refer Slide Time: 18:02)

Now, let us discuss the different ways all those methods can be used; now again I just want to

mention there are certain subclasses like say data input stream. It is some special class actually;

this class as I told you it can read byte-by-byte also. In addition to this it can read bytes; but

returning these bytes to a program in the form of a primitive data.

That means it can read bytes, but it can return as you say a short integer; it can read an integer

which is 4-bytes reading. So, it will read automatically 4-bytes at one go, and return the integer

value which these 4-bytes represents. So, likewise the different concepts are there; so read UTF

this method you can use to read a stream or a text that is stored in a file. It will read byte-by-byte,

but ultimately it will return maybe a line of text like this. So, there are different what is called the

method to read primitive data; by name itself you can understand.

So, read Boolean means it read 1-byte, which basically represent either true or false it is like this.

Read Char it basically 2-bytes because in Java it store as a 2 uni-code, which is 16 bits. readLine

basically is a text until the carries return or next line is encounter. So, it basically read a text,

which is basically store in a buffer, or in a file, or in an array like. So, these are the different

methods if a particularly it is a data input stream; we use data input stream when we want to get

the data as a primitive data type.

Now, first will discuss about very simple example and this is let see reading from keyboard;

where keyboard is a input source or you can say it is an input stream. Now, so this input stream

we want to read, and which class we can think for reading the data from an input stream, like

keyboard will be discussed in detail.

Now, also keyboard as you know unlike the other any other stream like file or memory or

network or pipe; it is basically called a standard input. So, this standard input is defined in a in a

class that is called the system dot in. So, system is a class which is a static class, declared in Java

dot lang package.

And what this lang that class, there is a field; this field is called in. in basically represents

standard input that is the keyboard. So, system dot in basically regarding the standard input

keyboard. So, there are many methods like system dot in dot read; this means that if we call this

read for this right, then it will read a byte.

(Refer Slide Time: 21:26)

Now, let us first start about this concept, and whether that we can discuss on program; and I will

try to explain this program so that you can understand about it. So, we are using Java dot IO

specialty, so for each program related to this IO handling. And we should input java dot io; so

this is must.

Now, this program explain how the keyboard reading is possible; and to read the keyboard our

objective is to read as a primitive data. So, that we read some integer keyboard, so user will type

something from the keyboard; and your program will read that data which user has typed and

then do certain printing or processing whatever it is there; now, let us proceed with this program.

So, this is a main method and the main class is Keyboard Reading; so here we first create an

object of type data input stream.

Because we want to read data as an input stream, so this object is dis; and this basically of type

data input stream. So, there is a constructor which we can use it, and this is the top source from

where we want to read. So, system dot in basically indicates the form, which input we want to

read data; as I told system dot in basically keyboard. Now, here the source can be anything

which will discuss about a source can be a file; it can be memory location, or something else. So,

in that case accordingly that name can be (())(23:06).

But, we want to read keyboard data; so system dot in is the input source in this case. Now, here

just you give a prompt from the program, Enter a string; now this basically read line. Now, here

actually this read line is the method, which is used to read anything the user has typed; and then

press Enter. So, if it is there then it will read and then this read line method will return as a

string; so, this string will be stored as a str1. So, in this case you keep a prompt to the user; user

typed something and then return and then you read.

Now here, then after reading system, it basically print; so you enter string is string 1. So, what

whatever you have typed, it will print; now, let us read some other type of data here. Enter a

whole number, you ask the user to type something, so integer. Now, here first you read as a text

because in this input stream whatever user will type; will be written as a string. And there is a

conversion from string to some type line. So, here first read as a string whatever user type; even

if user type say 1, 2, 3; it read as a string and it return to here.

And then this string is towards to needs to be passed to get the integer value; so this method is

Integer dot parseInt. So, it is basically convert from a string to an integer, so x will now store

whatever the integer user has typed. Now, next ask the double value, read as a string; and then

here the Double dot parseDouble.

So, that the double value can be obtained from the string type; so this y is a double value. Now,

you do the comparison to read the speed, and finally you just close the input string that you have

opened. So, this ends the program and this program should be under try-catch block; so you can

write here try and then catch.

Otherwise you can write throws IOException, so try-catch block is must, without this throw

statement here or try catch block including this; it can leads to the program can give compile

time error because program may not overlies you to compile the program without try catch. So,

try catch is mandatory code for any output, input/output handling.

So, this program shows how some data can be read from the keyboard using the data input

stream class.

(Refer Slide Time: 26:06)

Now, this is another extension of the same program, here the same program of course. This is a

interest calculator is basically we want to calculate the data; but reading the data from the

keyboard.

So, here this is the input string that we have created; again from the keyboard. So, here you read

the value, then convert this value and then write; then then then process it, and it will continue

like this. So, this basically reads certain data as a primitive data, now let us continue this program

again.

(Refer Slide Time: 26:48)

Here we read few more here again read from the keyboard as a Float; and then read as an integer

from the string and you store. And then finally you can use this data for your calculation. So, like

you read principal, you read interest, you read number of years; and then finally calculate your

program can calculate, so reading from the keyboard.

Now, here you see a flush, flush is basically see if you are reading the data; so flush is basically

one sort of cleaning the keyboard buffer actually, so it clean the buffer. So, whenever you

execute a flush command, all data which is stored in the input stream will be flushed. That means

cleaned, it somehow goes to some program or somewhere right; so, if you type something it will

basically read that part only. Another thing is that suppose you want to read an integer, but you

type say suppose abc; and then you call this method integer dot parseInt from the string.

Then it will basically gives an IO exception; it will basically invalid type exception sort of things

are there. So, you have to be careful about it, whenever you type say integers; so you just type

integer value from your side only. And then program will manage or your data input stream class

will manage to get back the data; as a converting from byte to your primitive data type. So, this

is the concept that is that is the important to remember. Now, so this is the input stream class,

now let us see a reading a file; how we can read a file from this is file is a input stream class

here.

(Refer Slide Time: 28:36)

This is one simple program that is you can consider. So, here read bytes demo is basically this is

a input stream and then byte stream; so, it will read byte-by-byte, a very simple program it is. So,

first of all we have to have the file input stream, because it is the input stream in our case. So, we

declare a a declare an object called infile as a file input stream; initially it is null. Now, here file

input stream args 0, what is the problem is that whenever you run this program; read by demo

you have to give the file name first. So, you want to read something from the file, say abc dot

data or abc dot txt.

So, you just give the so this program is say read by test demo abc dot txt. Then args 0 will be abc

dot txt, because it is a common line input; so this basically serve as a file name, from which you

want to read the data. Then file input stream is basically make a connection from your program

to this file; file is stored suppose in your current directory from where you are running the

program. Now, this is actually you see read method we are calling for this file input stream class;

that is read method, it written 1-byte at a time, so it will written as a b; and this this is under

while step, so it basically byte-by-byte.

And then it convert into the character and then it basically display; so this basically read the

entire file byte-by-byte, that means one character at a time and then display all bytes; and here

you see this is a byte is an ASCII code. So, Java is basically compatible to all, so ASCII values

those are there; they are although it is Unicode standard all the characters but, ASCII value Java

can recognize and then can be represent. So, whatever thus text you type, character you type

from the keyboard, whatever the symbol it is there; they are basically standard within the ASCII

range actually.

So, it will display on the screen and finally, and you see we have included within the try-catch;

this is very important and the user syntax of try-catch construct, so this ultimately scan the entire

file that you passed as an common line input, and it will read the entire file. So, this is basically

example how it can read byte-by-byte, from a file as an input source.

(Refer Slide Time: 31:30)

Now, let us consider another example which basically read the bytes; but using the different

methods those are there, declare in the input stream class. That is also available as a file input

string class, you just note this program. Again the similar kind of program, we create basically a

file input stream; let this is the input file we want to read.

We have given the direct path that also you can specify; that is where it is in the C drive or

whatever it is there. So, this fin is basically is a connection from your program to the input; what

is called the source of the file namely this one. And here you call the available method then how

many bytes are available there; that means yet to read basically it will be return there.

So, the in this case it will be return the total size of the file it is here; so this is the size, then you

can ping this one. Now, here first one fourth of the file let us read it, how you can read it; you see

what you are doing for integer I equals to 0, I less than size by 4. So, that means it will basically

read first 25 percent of the file, it will read as a character in the string method that we have

discussed. Now, we can continue the reading because we have read only one fourth of the part.

(Refer Slide Time: 32:49)

In the next part of the program as you see remaining bytes after reading one fourth; it will give

the remaining. So, it means basically say that 75 percent is available, and then again you are

reading the next one fourth of the file using byte buffer. So, here basically we have array of

buffer and then you can do this.

So, we declare an array of buffer is a array of bytes actually, the total size of the array as declare

size by 4; because we want to read next one fourth of the data. So, here you see read method we

call as b, so this basically it will read the whole junk of bytes and stored into the bytes; that will

be printed here. So, this basically store of the byte, can be stored as a string; and this is the string

basically the byte that you have read.

It is stored as a form of a string, and then that string can be printed here. Then you can have the

total bytes that is available, you can skip like one fourth; this is the skip is the that you can

remove. And then you can again read available, so this way. So, this indicates that how you can

scan the entire input string according to your own control, so that you can read the file one by

one. So, this is very helpful so that because we have a good control over the byte-by-byte

reading; so this is a good advantage that is basically available from this one. Now, let us discuss

about byte output stream class.

(Refer Slide Time: 34:19)

There are many okay we have learned about input stream; now let us see output that means you

can write something to the target destination. Like input strings there are many many such

destination target; where you can write, we can write into a file, we can write into an array, we

can write into a filter output stream; that means converting data into primitive type and then it

can store. We can write as a piped that means multifaceted program where it can work as a

destination pipe. We can write as an object output into some target; it can be maybe control or it

can be file.

File data output stream we are already familiar to data input stream; it is a just opposite to; that

means if we want to write back into the form of a primitive data. So, you can from your program

write as a primitive data, automatically save as a byte. Buffer is basically is a faster access,

pushback data output stream is a after reading, you can comeback and then this one. So, these are

the different methods are there, which you can consider in order to I mean store data into an

output stream.

(Refer Slide Time: 35:29)

Now, these are the different method, these are the different classes which we have already

discussed about. It is listed in a tabular form and you can take your time to study about; these are

the different things, different way, the different type of destination output can be controlled.

(Refer Slide Time: 35:47)

And here the different write method is available, because it is writing purpose. You can write as

a single byte, you can write array of bytes, you can write byte is junk of bytes also. That is there

possible and then close and then flush; because you have to after writing, you can flush in

consent all the all the all the data that is stored. Either in your buffer or in your input repository;

so that it to the output destination.

(Refer Slide Time: 36:14)

So, let us see this is the data output stream is more interesting, because here from the programs

program size; you can treat the data as a primitive data. And whenever the data goes to the

destination, it will basically store as a byte. So, for this writing primitive data, these are different

methods like writeLong, writeShort, wrtiteInt; as the name implies you can write as a primitive

data.

(Refer Slide Time: 36:43)

Now, let us have some discussion about how writing the byte into a file; and this is one program

is a read/write primitive data. We can read from an input file and write into an output file; this is

the idea that to actually this program.

So, for this purpose we have to create the file output stream object for a given file; so primitive is

the name from the file. So, we create a file object here, this is the name of the file from which we

want to create; and you can note as the how file object can be created. So, one argument can be

given as a file and where you want to and then data output stream is basically is a basically

connection from your program to this interface. So, here interface is a data output stream, which

take the data from your program; and finally this program this data from the program will be sent

to the destination namely the primitive; which is basically is a file primitive data.

Now here very simple, there are very few statements that we have; you can understand WriteInt

means you want to write this as an integer, false is a Boolean is a character. So, all these things

go goes all these things go to the file primitive data.

(Refer Slide Time: 37:54)

Now, let us extend this program as a continuation; we can read again. So, for this read we have

to create the input stream; so file input stream, again for the same data file can be consider the

input now. Data input stream object can be created here, this is an interface from your program

to this one; because your program will read from the data input stream which intern read from

this file.

And these are the few statements where the readInt, readDouble, readBoolean, readcharacter

whatever the data you have stored it will read automatically. And here one thing again very

important, so in the order you have write in the same order you read, then it is okay but for

example if you readDouble as a readInt, then all things will be (())(38:35, so that will read an IO

exception.

So, this program should be enclosed within the try-catch block; or throws IO exception should be

declare, when the main method is there. And finally you have to close the input/output stream

both. So, this is a program shows about tell about, how the reading is possible from there.

(Refer Slide Time: 38:58)

Now, copying a file into another file, we just try to give one more example. This is very popular

one what is called the program called the copy byte program, so byte-by-byte. The same thing

earlier we have just used the data input stream as a byte-by-byte; but here will use as a copy

byte-by-byte. You see what is the mechanism that we can read it, so first there are two inputs

stream input stream. First two stream, one is input stream, another output stream; initially these

streams are created but they are not connected to any device, so they are null.

Then we just create a byte, where the temporary byte will be stored; so, now let us continue this

program.

(Refer Slide Time: 39:55)

Now, here you see we just create a connection that is the int dot dat, assuming that this file is

already available to you. If it is not exist then it will throw an error; so int dot data is a already

input file where some data is stored. And out data is basically target file; if it is not available then

it will not create a problem. But, it will automatically create a file and store the data there. And if

this data this file contains some initial data; then it will overwrite actually. Now, here you see

within a do-while loop, what we are doing? We just read the file one byte-by-byte; and we write

the same thing into our output file.

So, it basically it will scan starting from beginning of the input file in that; will read byte-by-byte

and write the byte into this one. So, it will basically copy byte information, and this byte will

continue until the end of file. End of file is basically when the, this file will return minus 1. So,

end of file means minus 1, minus 1 is basically is a byte concept there is data available from the

input source. So, this program is very important regarding this reading from a file byte-by-byte.

(Refer Slide Time: 41:06)

And there is a try-catch block should be enclosed to make the program reliable.

(Refer Slide Time: 41:12)

So, we have planned about how the input stream and output stream as a byte can be used; so that

can be read. And for many more discussion you can link, you can cancel this book; this book is

very has the many discussion there. And also this document also, this link webpage is there; you

can find many information from there also. And this is the good tutorial from where you can

learn many more things; so I should advice you to check beyond this discussion which I have

made here.

Otherwise for your extra learning that is the supplementary material. So this is the concept that I

want to convey it as an input or byte stream class actually. And there are many more things about

one; this is a one part of the Java dot IO package; there are many more things. Mainly there is

another ways that data can be dealt with the; it is called the character byte stream class. So, this

class will discuss in our next next video class. Thank you, thank you very much.

