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Let us start another very interesting data structure, it is called graph structure, graph data structure 

and there are a few data structures which are called classic data structures. We have already studied 

few such data structure including tree, linked list, array, stack, queue and everything. So, graph data 

structure is one very important candidate in the list of all data structures and this data structure has 

been received many attentions from theoritist, many scientist in the field of computer science 

actually and many theorem and many research paper on this data structure have been published so 

far.  
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Now, so today we will try to understand about this new and interesting, fascinating data structure. 

So, first we will try to understand about the graph and then definitely like all other data structures 

we have to study about how such a data structure can be stored in computer memory that is, 

representation of graph and then we will try to see some important operations which can be applied 

to these data structure. So, this is basically the plan for this lecture. 
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Now let us first come to the concept of the graph data structure. So, it is very early in the, may be 

very beginning point, mathematics grows in different application and that time Oiler who is called 

the Father of this Graph theory. So, Oiler started one, I mean introduced on problem this is actually 

called on puzzled actually which many people could not solve for many years and this puzzle 

related to one problem it is called Cronics Park Bris problem.  

So, in Russia there is an island it is called the Cronics Park name and this island is connected with 

five different bridges and that problem why is that how one can travel all the lands that is there in 

the islands crossing all bridges exactly once. So, this problem famously called Cronics Park Bris 

problem and is basically the starting point of this graph structure actually and the graph concept 

there.  
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Now, so graph is basically is very similar to a tree actually, and we have already learned about that 



tree and in tree the elements in these data structures are of two types, they are called nodes and 

edges. In graph also same thing nodes and edges. So, nodes are there and all edges basically 

connects all the nodes whatever the way it is possible and for a particular tree called the binary tree 

where each node has at the most two edges actually and there may be some nodes which does not 

have any edge or whatever it is from it actually.  

The difference between the tree and graph is that and both the things, the tree and graph they are 

termed as non linear data structure because if you want to store this graph you will not necessary to 

use them into a contagious memory location. You can store whatever the memory it is available 

there, because they are basically all linked, connection where these nodes and other nodes have to 

be connected through link actually.  

So, in that sense both the data structures are called non-linear data structures. But the difference is 

that in case of tree there will not be cycle. So, that means starting from a node you will be able to 

reach to another node, but you will never be able to come back to the previous node from where you 

have started. On the other hand, if the graph data structure is basically a cyclic. Cyclic in the sense 

that there is a possibility starting from a node you will be able to reach to the same node again.  

For an example the first picture that I have shown is basically tree as you see. Starting from this 

node we can reach to any other node or this node to this node like this one. But here if you see from 

this node we can start here and go there and go there and go and then come back to this one again. 

In that sense it is called the cyclic. So, these are the main difference between the tree data structure 

and graph data structure from the first view of them but it has many other difference and other and 

many other issues which are basically makes the graph is an important concept to be studied 

actually. 



(Refer Slide Time: 5:57)  

 

Now, so this is basically so essentially what you can say a graph is basically a tree or rather we can 

say that a tree is a graph. But a tree is a graph but and then a graph is also a tree but all graphs is not 

necessarily a tree actually. That we can tell about. Now, let us come to this concept there are few 

examples that I want to tell about that why this data structure coming in the picture and what is its 

application importance rather.  

There are many situations which basically can be represented using the graph structure. Now, for 

example, say suppose in this first picture if you see. So, this is a basically an example of a graphical 

representation of all the airports those are connected in say particular region or country like see East 

Asia. So, in this figure you can see so that these are the different nodes. Each nodes represents an 

airport and then an edge represents that from that airport to which other airport that you can fly. 

So, to and fro fly from Delhi to Guwahati and these kind of things are there. This basically is a good 

example that is a graphical structure that means network of all the airlines that is the air is basically 

the graphical structure. And I told you the Konigsberg’s bridge. This is basically the Konigsberg’s 

bridge these are the basically 4 islands and 4 islands are separated, are connected rather connected 

by these are the 7 bridges. So, this is basically we can represent these islands and bridges by means 

of a graph which is basically shown here. 

So, this basically the island Konigsberg and this is graph structure. And as we can see here basically 

all islands are represented by nodes, so A, B, C, D. These are the 4 nodes and all bridges are 

connecting from one node to another, means one land to another part of land actually there. So, 

these are the different edges. What we can say that a geographically landscape also can be 



represented with the help of a graph. 

This is another one very popular applications which you are familiar to is basically source and 

distributions. Now this is related to many context, for example, here the different commodity that 

needs to be supply to different destination, for example, here 3 destinations unlike this one. Now, 

how is form each from each commodity can be supplied to different destination is depicted in this 

figure.  

This is very simple example, but in actual situation, actual scenarios there may be many 

commodities and therefore many destination and there are many routes or possible paths from one 

to another, not necessary direct what is called the supply there may be via or intermediate supply. 

Then this graph structure will be really very complex actually. 

And this is the another example this is related to software. And you know any program that you 

write is basically lead to a software. Now whenever you have to represent or you have to test a 

program, so basically the best idea it is that if we can have a flowgraph of the program. 

Alternatively if you have to write a program, then how to write the program so maybe your designer 

or your manager can tell you so this is the flowgraph.  

And given the flowgraph you have to write the program, so write means how many loops will be 

there, where the loops will be there? What are the different paths? What is the decision statement 

and everything? That is basically that is depicted very nicely in a graph.  

This is basically another example of a graph. This is called a flowchart or simply a flowgraph also. 

Here also you can see there are several nodes and then edges. And nodes and edges are connected 

and you can starting from one particular node you can reach to another nodes and this kind of things 

are there. So that I have mentioned few examples there are plenty of examples which I can mention 

and they are basically the graph concept is needs to be applied in order to understand each situation 

actually. 
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Now so we have understood about the graph concept and then we know that graph is very important 

one things in our daily life. In fact, to solving many problems in our daily life actually. Now, let us 

come to theory of this graph data structure. Now, there are basic terminologies which we have 

already studies related to their node, related to the tree it is also applicable here. Main terminology 

that is there is basically node and edges. 

For example, here as we see this is one tree. It is essentially a graph also. This is another graph. And 

here you see the nodes are labeled with certain names or something like. Actually each node 

represents either label some string name or it can represent many other source or other important 

information, can be a number also. There are many other things that you can store in the form of a 

node actually. Like tree we have learned about that it can store a record, is a pointer to a record, it 

can store a file. It is like this, so it can be like this one. 

Node can be in fact a server. Then another node can be a computer connected to the server. A node 

can be OMPS from there is a link. So, what is node? There are many information that you can store 

actually. So it is basically is a complex data structure, is an abstract data structure that we can put as 

the node. And edge basically the same thing as in tree that is there in the graph also is a link. 

Link means connection from this and this. So, it basically predecessor successor relationship, who 

is the predecessors of what. It is just like parent, parent child relation like. There is another concept, 

which is basically different than the tree is that in case of tree, so direction is implied that means 

direction is from always parent to child. So from a given parent you will be able to reach to their 

children, but opposite is not possible.  



This means they from a children, I will not be able to go their parents actually. But in case of graph, 

the predecessors successor relationship, so from a given node you will be able to reach to another 

nodes. Or from the another node you will be come back to the same node actually. This means that 

in case of graph the edges will be either undirected or directed.  

Now here, in this example, so this is an example of a graph why are edges are undirected. This is 

also another. But here in this example if you see graphs are, nodes are connected with directed 

edges. What is the difference is that in case of directed edges you will be able to go from a node to 

another node. If the direction permits otherwise it is not. For example, from A to B we can go, but 

from B to A you will not be able to go.  

On the other hand, if it is undirected V1 to V2 or V2, V1 both way movement is possible. Now, so 

this is another difference that you can think about. I mean with respect to tree, the graph has the 

different characteristics. Now, so we have understand about directed undirected. Now, directed 

event or undirected, whatever it is there, they can be associated with some value that is called the 

weight. That means each edge can have their weight. 

Now here for an example this is an example of a graph which is basically directed as well as 

weighted. What is the meaning of this weight is that say for example from B to A there is a supply. 

What is the maximum supply that you can say it is a 5. Or say B to A this is a road and then what is 

the load that traffic can flow through this road it is basically 5, so this number implies something 

meaningful.  

So, this is the weight, these are the weights. And so in case of graph, that graph can have directed or 

undirected. Direct weighted, undirected weighted many possibilities are possible. So I have listed 

few examples here. There are many more examples also possible. 
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Now we have understood about basic concept about the graph and then some applications and then 

few basic terminologies and while we will study we will continue our discussion we will, I will 

introduce few more terminologies in this regards. Let us come to the discussion about 

representation of a graph. There are many ways that a graph can be represented. Now the three 

different, three major representations are very popular among the scientist.  

First of all is very old one and it is called the set representation. Second is basically called the link 

representation. Link representation is very similar to tree type. And another is called matrix 

representation. It is called the sequential representation. It is just using a matrix and set 

representation is basically using a text type things it is there which is very compact but it has very 

limitations so far operation is concerned.  



Whereas, the link representation is the best data structure representation for the graph. Sequential 

representation is very good, is very fast but it has limitation that it is only support static weight. 

That means one you can represent it you will be able to I mean extend it adding few nodes or 

deleting few nodes is bit difficult. Anyway so these are the three different representation. Let us 

visit each representation one by one with examples.  
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Now, I first discuss about Set Representation. Here I have given few graphs G1, G2, G3, G4 for few 

examples. Now whatever be the type whether directed or undirected or directed weighted and 

undirected weighted no issues you will be able to represent a graph using Set Representation.  

Now, in this Set Representation actually there are two sets; one is called the sets of all vertices that 

is the nodes. Now, for example, for this graph G1 which is basically simple out of so many graphs 

we have listed here. These are the set of vertices involved V1 to V7. This is basically a set. Then 

another set is basically set of edges. What are the set of edges? V1 to V2 one edges, V1 to V3, V2 to 

V6, V6 to V7, V3 to V7.  

Now, all the set of edges are stored is another set. So, there are two sets V is the set of vertices and 

E set of edges. Similarly G2, you can check it that this is the graph set representation of the graph 

G2. Now directed graph also similar you can represent. We can include an edge from A to B if there 

is a direction. For example here A to B edge is there but B to A edge you see it is not there.  

Now, so there is a problem whether this is directed graph or undirected graph. We assume that this 

is undirected graph unless if you say specific thing it is there. But whenever we say graph G3 we 

say that it is a directed graph. And the direction of edges is represented by the set. And then this set 



of nodes or vertices are the same in any way whatever it is there. Now weights also can be, in case 

of weights there are so three data needs to be stored, first of either weights and then second 2 is 

basically the direction from which vertices, source vertices and then destination vertices.  

So, 3A to C that means it is an edge, undirected which direction is from A to C. For example, here A 

to C and the weight of this edge is 3. So this is the representation of the graph G4. So, whatever be 

the graph if you have given you will be able to represent with the set representation very easily n 

very compact representation you will just you can check it. So, this is a Set Representation. 
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Let us come to the Link Representation. Link Representation use the link structure. The link 

structure means you have studied about single linked list, double linked list. Here we usually follow 

the single linked list but you can follow double linked list also no issue. That may be some 

advantages in some situation. But single linked list is enough actually. 

Now in this link structure actually there is basically the master array, it is called the pointer array. 

Pointer array, size of the pointer array is basically same at the all total number of vertices are there 

in the graph. So, for example this is G1, this is graphical representation. This is linked list 

representation of a graph G1. And here you see 7 vertices are there so this pointer array stores 7 

what is called the elements. So here V1 to V7, are 7 elements. And this is a pointer array because 

the another field is used to point to some other linked list.  

So, here putting V1 points this is another linked list. So basically what you can say V1 in the pointer 

array basically header to the linked list basically. This is the header of the linked list, this is another 

header to linked list and so on, so on. Now here we can see that V1, from V1 we can go to V2. So, 



V1 to V2 and from V2 to V3, from V1 to V3 also can be. So, there is a link from V1 to V2 and V2 

to V3. Similarly from V2 to V4 this is the link. From V3 to V6, V7 it is there.  

And there is no link from V4 orV5, V6, V7 because they are null, so these are the remains null. This 

is link representation of a simple graph G1. Now, likewise G2, the link representation is shown 

here, you can check it how the representation stands actually. It is the same as the G1 is represented, 

so number of vertices 7 so here the pointer 7, pointer array is 7. Each pointer points to linked list 

giving that what are the connection from V1 to others, V2 to others, V6 to others and so on, so on. 

Here, you can see from V7 we will not be able to go anywhere, so there is no pointers whatever it 

is. Now, this is the directed graph representation, undirected graph representation rather. Now G3, 

G4 are the directed graphs. So, the directed graphs representation for G3, G4 for example G3 is 

shown here.  

You can check it again why it is there. From A to, there is for node A to B there is path and A to C is 

a path. So, A to B and then A to C basically here, B to C implement that A to C is there. But it does 

not mean that B to C is there. Here basically it says that A to B, A to C the path is there. From B for 

example, there is no path. Here you see from B there is no path. So, it is basically null actually. And 

from C we will be able to go to B and A.  

So, here C, A and B so two nodes are there which represents the successors actually. So, here 

basically they are representing successors and they are basically predecessor to any successor in this 

representation. Now, so far that weighted directed graph or weighted undirected graph, we have to 

add one more field. For example, here each node contains one more field this is basically to store 

the weight of the edge. 

For example, here A to C in this graph G4. This is a representation of G4. A to C as we see there is 

an edge, so there is a link so that means A is predecessor C is a successor. And then here A to C 

edge is there and this edge is weight 3. So, this is basically weight 3 and so on, so on. Now, here, for 

example, another B to A, B to C and B to D. So, here B to A, B to C, B to D it is there. 

And weight for each edges are there. And you can note one thing that ordering is not an important. 

For example, here B to A, B to C and B to D it can be in any order as it is shown here. So, ordering 

is not an important in this predecessor and successor relations actually. This is few examples that is 

that basically we discussed about how a graph can be represented using linked list structure. Now, 

let us come to discussion about another representation which is very fast and very compact again 

but it has limitations. Those are the other issues of there. 
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Now, in this representation we usually use a 2D matrix to represent a graph. Now this 2D matrix has 

number of rows and number of columns. So, number of rows is a same as number of vertices or 

nodes are there. Number of columns is also same as the number of vertices are there. Now for 

example, in case of G1 number of rows will be V1 to V7 and number of columns also will be V1 to 

V7.  

Now, so this is basically (())(24:30) matrices to represent a graph with N number of vertices. Now, 

this is the matrix for example, in case of graphs G1 this is basically rows and columns for the graph. 

Now, entries in the graphs actually indicates that if there is an edge from this node to that node then 

we can put 1. If there is no edge then it is 0.  

Now, here for example, V1 to V2 there is an edge. So V1 to V2 this is 1. Similarly, V1 to V3 also 1, 

but there is no edge from V1 to V4, V5 or V5, so we put 0. Rest of the things will be understood 

like this one. Now this graph G2 is also similar to this graph again but is little bit complex and it is 

also shown here. So, this is basically, this matrix is called adjacent cemetrics. 

That means from a node which are the other nodes are connected that can be obtain from the 

adjacent cemeteries and each entry represents whether there is a connection or not. So 0 means no 

connection, 1 means there is a connection. Now, again for the weighted graph also it can be, but in 

case of weighted graph instead of 0 and 1, we will put weight of each edge. 

For example, this is a G4 and this is a graphical representation, representation of graph G4 using 

matrix and here you can see A to C, there is a path only. But there is no other path so all entries are 

0 except C and this at actually 3. Unlike it is 0 and 1 in earlier cases actually. And for the directed 



graph also without weight also it is there. If there is edge from V1 to V2 it is there.  

But in case of, in case of a graph if there is no loop, self loop rather, so if then we can see all the 

diagonal entries are 0. So, that is the concept that you can find it whether there is in a loop. That 

means loop means from V1 to V1 itself or VI to VI itself whether we can move. In case of theory of 

graph it is possible.  

So selfloop is possible there. Now, whatever we whether loop self or whatever it is there, it is also 

possible to represent in case of this adjacent cemetric representation as well as in all other 

representation that we have already studied. So, this is about the representation of the graph with 

three different structure we have studied.  
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Now let us discuss about few operations on graph and main operation that is possible so far the 



graph is concerned is the insertion. That means if you want to add a new node into the graph, if you 

want to delete a node also. Merging means two graphs can be merged. It is basically insertion and 

deletion operation put together to merge. And traversal is very important how we can delete all the 

nodes it is there.  
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Now, let us have a quick discussion about all these three operations are there. Now, here is an 

example just I have mentioned how an insertion operation can be carried out in case of graph if it is 

represented using link. I will discuss only with link representation. All other representation you will 

be able to understand by this means and the matrix representation also I will discuss there. 

Now, here in this example suppose the original graph is there and we want to add one new node say 

V8 and suppose it is a undirected graph. Now, so what we should is that we should add another one 

point into the pointer array. So, that means we have to extend this array, this one. 



Now, so we can add one more because it is new node to be added. Earlier V1 to V7 now V8 then 

what we have to get, we have to adjust the edges those, because of this addition which will be there. 

For example, if we add V8 and if there is an edge from V1 to V8, so from V1 pointer we should add 

this node. And here we see that V1 and V4, these two pointers have to be adjusted because they can 

be added here. In addition V8 also because V8 should be connected to V1, V4 that needs to be 

added.  

These are the few addition that needs to be done, if we want to add new node into a graph. So this is 

just like extending previous structure into other as per the requirement. So, this is about the 

addition, insertion operation.  
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Now insertion operation for the directed graph or weighted graph. In case of weighted graph there is 

one field will be there which is basically not in this representation, whatever it is. Now the directed 

graph is also there but we have to be little bit careful about that, as the direction implies from V1 to 

V7 and V7 to V1, not necessary to be add the node V7 everywhere like. Because it is depends on if 

there is an edge then only from that header to that linked list the nodes will be added here.  

For example, here there is no edge from V1 to V8, so there should not be nodes under linked list 

from V1 pointer to be adjusted. However V4 to V8 it is to be there. So, it is there and V8 to V1 it is 

there, so it is there. This way we can enforce the directivity among the different nodes if it is added 

into the graph. So, this is the insertion operation.  
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And now let us consider the matrix representation. Matrix representation is easier also. We have to 

just increase one more dimension in the matrix. For example earlier V1 to V7 so this is the, this is 

the original matrix are there but we want to add another nodes say V8, so we have to add one more 

row and then one more column that is representing the new node V8 is added here. And then the 0 

and 1 entries the adjacent entries needs to be updated accordingly as per their edges. Directed edges 

also likewise we will be able to add it. So these are the insertion operation.  
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Deletion operation is very similar to the insertion operation. In case of deletion we have to remove, 

delete. So, some pointer elements needs to be deleted. Some nodes in the linked list needs to be 

deleted. Now which node is a removed accordingly and that pointers and that nodes in the all 

adjacent list needs to be removed. For example, here if the V8 needs to be removed then all these 

are the nodes are to be deleted from the nodes. And that deletion from the linked list not necessarily 

form end or from front. It can be from any positions. And here the pointer also needs to be updated 

or removed. This is the case of deletion and for the directed graph also similar concept that can be 

followed. It is the same as earlier.  
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And then matrix representation is also same. We have to, if we want to remove a particular node 

corresponding that node the rows and columns needs to be removed from the matrix. 
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Now let us come to the graph Traversals. Graph Traversals idea is that we have to visit all the nodes 

in the graphs. That is the basic objective in the traversals. Now this traversals can be done in two 

ways. One is a level by level and another is this is called the breadth first traversals and one is 

depth, depth weight level is called depth first traversals. 

Now let us first see what is depth first traversals. So for example, in this graph we have to start from 

T1, we have to go there, there and the deepest one. Then from there we have to go there, there and 

the deepest one. Then go there and then once it is finished then go there, then here and then here 

and then this one and then this one and then finally. This is basically the way the depth first 

traversal can be carried out.  
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On the other hand if it is a breadth first traversals. So idea is that we should travel all the nodes in 

this level fast level by level. Then all nodes in the level, then all the nodes in this level and this 

level. So, this is the example of breadth first traversals. Now although it is very easy for tree but it is 

bit difficult for the graph. For example in case of graph which is the starting node or route node. 

Any node can be taken as a route node. So any node can be taken as a route node. So this is route 

node. Then breadth first traversal it is like this. So this then and then, then finally this, this.  
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On the other hand in case of this graph if it is the depth first traversal then we can go this, this, this, 

this, this then this, this then this, this also. This is the example of depth first traversal that can be 

from starting from any node. So definitely starting node matters because if this is starting node we 

can follow different path, same path maybe that depends on direction is there or not there, whatever 

it is there. 

Now, this is graph traversals, there are mainly 2 traversals are possible, the depth first traversals and 

breadth first traversals. But in order to implement there is an algorithm which we can follow and 

then given an input graph, it is either in link representation or set representation or matrix 

representation. 

Obviously representation matter because for different representation algorithm will also change. It 

is not that same algorithm can be applied to the graph, whatever the representation you follow. 

Algorithm is there and that algorithm you can follow to implement the traversals algorithm.  
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But in order to implement all this traversals algorithm there are some additional data structure this is 

required. For example DFS traversals you need one stack that needs to be, to keep a track that from 

this point which points has to be traverse and if we traverse it then what is the return point to 

traverse others. Similarly, for BFS traversals the data structure that you should consider is queue.  

So, two data structure matters and then you just simply push some elements into the queue if it 

needs to be visited and you just pop it if it is visited is over. This way you can keep a track that we 

should not be loop or we should complete the visit to all nodes this kind of things are there. I have 

given few examples in this graph where it basically shows how the queue structure can be used and 

then the BFS traversals can be done. In the previous lecture we have shown how the DFS traverse 

can be done using stack.  
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However the algorithm will be discussed in details later on so that you can think about how those 

algorithm can be implemented. And this chapter is very exhaustive actually there are many more 

things had to be discussed but because of the limited time and we are not able to cope with different 

concepts those are there. But this is the book you can follow here everything is very in details it is 

discussed.   

The algorithm is given, the different representation, many application whatever it is there. This is 

complete discussion, detail discussion you can find it those are, if you are interested to study graph 

structure much more in details then I should suggest you to go through this book. So this is a topic 

so far the graph data structure is concerned and we will discuss something very interesting 

algorithms related to the graphs in the next lectures. So, thank you, thank you for your attention. 

 


