
Data Structures and Algorithms Using Java

Professor Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 3

Topic: Basics of Generic Class

In this lecture we shall learn about how to define generic class. In the last video lectures we have

covered about how to define generic method. It is little bit one advance step of that. So, inside a

class, method will be there which we can make generic but as a whole the entire class can be

made generic. And obviously if the class is generic then the inside this method, basically which

operates on this data that also sometime needs to be generic or non-generic whatever is there.

Anyway, so if we can declare a class generic this means that, the path data field of this class can

be any type. If it is not generic then only the data field can be specific type of data, but generic

means it can be any type of data that can be there.

(Refer Slide Time: 1:30)

Now, in this lecture we will try to cover about the concept of generic class first, then we shall

learn about how a generic class can be defined. We shall illustrate the concept and then generic

class definition with few examples. The first example is very simple that how the generic class

can be defined and then a generic class with array of elements, these array of elements can be of

any type and then we will discuss about how a generic class also can be whole true for any type

of data other than the primitive data or user defined data. So, that is the topic that we are going to

discuss about.

(Refer Slide Time: 2:23)

Now, let us first have the idea about concept of a generic class. Now, the concept is there, if we

can define a class that is a program and if the class is generic this means that it can holds any

type of data in it. Now, first let us explain this concept with an example. Suppose, this is one

simple program that we are going to learn about, the program is basically initialize an array, then

print the elements in the array and it will do some task so that it will reverse the ordering of the

array.

So, these are the three task that we want to do and we are interested to write a program. Now,

this program we want to make a generic in the sense that the array that we will use it can store

any type. Then the method which will print, it should print any type of arrays, elements and

another method reverse which should work if the array store any type of data, it can be integer, it

can be float, or it can be string, or it can be any user-defined data type. Now, let us see without

any generic programming, if we want to do it then how we can do that.

(Refer Slide Time: 4:03)

Now, in this first (ex), this is the basically structure of the program that you should have in order

to deal with and in this case we are only considering that the elements should be stored in the

array as integer. So, we can write a program, the name of the class, for example, can give at

specific array int, then we should have a declaration of array of elements, then constructor to

load the array that means initializing the array, method to print the array and another method to

reverse the array.

And finally this program can be run using a driver class that is main class where the objects of

this type will be declared and used or the all methods those are there in this class will be

accessed. So, this is the case.

(Refer Slide Time: 5:00)

Now, here is the program for you, very simple that you can check it. In this program, so this is

the class that we are going to define and this basically integer a, that means it will take only

integer elements and this is the constructor that basically take it. That means we will pass this

constructor as an array of elements and it will initialize to this. So, this basically refer to an array

index and then the whatever the array will pass to this that means to this program, it will

initialize to this one. So, this constructor is to be defined here.

(Refer Slide Time: 5:53)

And then there is another method, the print method is basically print the whole array. So, here

basically declaration of an array of elements and initialization and this is the printing.

(Refer Slide Time: 6:28)

Then our next task is to reverse the ordering of element, this method is shown here in the slide.

Yeah, so this is the method that we can see, the method name is reverseInt and this is the code of

the method, a simple logic by which the ordering of the elements can be made in the reverse

order and the elements will be stored in the same array and this basically gives the method of

reversing.

So, three methods, one is the method of initializing arrays we have discussed, then printing all

the elements in an array will be, how it will be it is discussed and finally the reversing of the

array elements. So, this completes the declaration of a class, in this case this class will work

specific to an integer array.

(Refer Slide Time: 7:26)

And finally the main method which will look like this just here as we see, we declared an array a,

then we call this objects a for this print method to print the elements of the array a, and then this

is the reversing the elements and then again after reversing, printing the array elements. So, here

we just create an object as we see, the name of the objects that we have created a is basically is

an specific array and then is an integer array basically, now this is for integer.

(Refer Slide Time: 8:21)

If we want to do the same job but for another type of data, for example, say it is a floating point

values then we can repeat the same program but for only floating point values. As we see here

the same program structure declaring an array of float values, initializing the arrays, then method

to print the array of elements and finally reversing and we can call this method in a main class.

(Refer Slide Time: 8:49)

The code is very similar to the previous one and this is the code and as you see this code is for

declaring the arrays, array of element initialization, print method and then this is the reversing,

the logic is same program is same only data type has changed.

(Refer Slide Time: 9:09)

And we can call this array of floating point values and then run it, this is the program but for

floating point values.

(Refer Slide Time: 9:24)

Again if we want to repeat it for the arrays of string then same, it is the same structure of codes,

same reverse method and then similar kind of what is called the execution of the method using

driver class here. Now, so three different executions we have discussed for which we ought to

write three programs specific array int, specific array double, and specific array string, this

should be written as string, by mistake it is written as double.

So, three methods we have discussed and we call it. Now, we could do the same thing but

writing instead of three different versions of the program for three different types but using

generic class declaration. So, how this can be done?

(Refer Slide Time: 10:34)

Here is an example that how it can be. If the types are different but logics are same, then we

should not go for writing different programs rather we can avoid code duplications.

(Refer Slide Time: 10:51)

Now, here is the idea about that how a class, that means a program can be made generic so that it

can take care about any type of data to run.

(Refer Slide Time: 11:09)

The syntax for these things, here is very similar to the concept of defining generic method, so

what we can do is that a class can be declared a generic by specifying a template of it. Now, in

order to declare a template, so here the template is basically to be enclosed as we have done the

same thing for method.

But in this case after the name of class within these angular brackets starting and closing and

whatever the different types that you want to handle in this program you can mention as a

template. That means without mentioning the actual data type, only the template type like T1,

T2, T3 if you want to process three different types of data in your program they are three

different templates T1, T2, T3 like.

And then we can pass after the template discussion, for example, these are the list of templates

may be 1 or any numbers, so template list accordingly and if you want to pass any arrays of this

template type, you can again within this first bracket and within this triangular brackets the name

of the array that you can declare, is a template array. Now, let us have a quick demonstration of

this program to understand how a class can be defined in a generic way.

(Refer Slide Time: 13:03)

Now, we are going to define or going to illustrate one example how a generic class can be

defined with the syntax that we have discussed about.

(Refer Slide Time: 13:12)

Now, here just closely look at this program, this is the one class we are going to discuss, the

name of the class is generic and within this angular bracket we want to mention that this class is

a template, is a generic class and we mention this genericity with only one template that means

this program will take care on template type of data, generic type of data. Now, so this class has

one members, the members is basically type of T, this x can be a single data type or it can be

array name.

So, it is basically T x, that means x is a type of data of type capital T. Then we should declare

one constructor, it is very simple the constructor will basically initialize the field x, so if we pass

any elements of type T then it will initialize the value of x, so this is the way that the generic

class can be declared and construct it, in it can be declared.

Now, after these things any number of methods in it can be declared, either they are of generic

type or simple non generic also in this case we just give an example of a simple method to print

all the elements, which are stored here in x using this method. So, simple print method will print

the elements which are stored there in x. So, this is the simple way that a generic class is

declared in this example. So, this is the way that a simple generic class that you can declare.

(Refer Slide Time: 15:22)

And now let us see how we can utilize it. And this is the one main method which basically utilize

the previous declaration. Now, in this method as we see we create an object a, here we mention

the template T as a string, that means this is the generic class that we are going to have is for the

type string and a is the name of the objects of type generic.

And when we create this object we initialize the field x in it passing a value here as a Java. So,

this means a string and a is basically whole the value Java at the moment. Now, in the next one,

in this example, it basically does the same thing but for numeric values. In the third one, again

we repeat it, we again create an object of the generic class, but for floating point values. Now, so

what we can see is that, we declare one class as a generic and whenever we create the math

objects of that class and any operation in it then can be called for that type of.

For example, print data here, this basically print data for integer type, here print data for string

and here print data for double values. So, this is, this way the generic execution can be done

depending on the type of values that you want to process. So, this is the way that generic class

and its utilization can be done. Now, so this example gives you a simple idea about how a simple

generic class can be declared.

(Refer Slide Time: 17:44)

Now, let us extend this idea little bit in a more deeper sense in the concept that how we can

define a generic class with array that array can store any data type. In the previous examples, we

have discussed about a generic class which contains a data of any type, but it is not array of any

type data. Now, in the next example we are going to discuss, repeat the similar procedure but

only for arrays. Now, let us note what are the difference, so for array and then only a single

elements.

(Refer Slide Time: 18:28)

Now, this is the structure of the program that are going to illustrate so that we can understand

how a generic class for array with any type of data can be declared. So, few steps like declaring a

generic array, then constructor to load the array, then method to print the array and method to

reverse the array so that any type of elements integer, double or string or any type can be used

and all this operation can be done. You can recall the class that we have discussed for integer

array, string and the strings separately we deal it but we can do it in a generic way.

(Refer Slide Time: 19:13)

Now, so here is the code, you should note it, the code is very simple again, similar to the

previous only minor difference. This is same as the previous one, we declare within this syntax

that it is a generic class, this is the declaration that we have added other than the existing we as

we know how to declare a class but only the template within angular brackets that is all.

Now, here only you see in the previous example we declared simpler array but here we declare

an array as an, a as an array of elements. Then this is the constructor, it is same as earlier one and

then this is the one method we just want to have it, so that it can access any elements into this

array using this method.

So, getData integer i that means it will return the ith element which is stored there in the array.

And then the print data is basically print T b, b if the array reference then for the entire array

starting from 0 to the length of the array, it will print each elements. So, these are very simple

method that we have discussed here in this class. One is the name, the value that it can store

array and then finally the print method and how to access each elements into the array.

(Refer Slide Time: 20:47)

Now, let us see the main class that we can discuss, so this is another method in the same array to

reverse the element. So, this completes the discussion of three methods, reading initializing an

array, printing elements and reversing this one and we can use this method for the three different

type of arrays passing into it.

(Refer Slide Time: 21:10)

So, here first we declare x is an array of integer and you note down with did not declare it as a int

x rather integer x, that mean x is an array of integers of course, but here integers are treated as an

object. So, in order to declare that object of integer array, we declare this declaration. So, that is

the thing that you should do in case of generic class, you always, you have to declare an array of

objects instead of array of primitive type.

(Refer Slide Time: 21:49)

And again the next example as we see, the same class method is basically instantiated for the

template here is integer, this is the name of the object that we have created passing x, x is

basically is a array object to it, that mean aInt is basically is a collection we can say which store

all the elements which is there in x.

Alternatively this is another syntax also you can do at the same time, here you can see the integer

array has been passed using this concept, here actually using these array instantiation created by

new and this array. So, in this case this is not required, so if we do not want to have it rather in

the same object’s declaration you can do it or else this one it can be done.

(Refer Slide Time: 22:51)

Now, so next is basically once this collection, aInt is a collection of array of type integer is

created, we can pass this and then printData method can be call and it basically print all the

elements in it. reverseArray another method it is basically there, we can pass this collection that

means array of elements, it can reverse ordering and finally again if we print the same it will

print the data here in the same order, here in the reverse order. So, this is, this works fine for an

integer array.

(Refer Slide Time: 23:46)

Now, we can repeat the same program but for other type of array. For example, let us see here

see, how the same program but it is for string, so this basically again run the program but for

other collection other type of array called the string, here string array is declared here. So, these

are the string array, we pass this string array here and then print reverse and again after reversing

printing this one. And you can see the same way we have thus, we did not write any separate

code for string, same code which works for integer array also now is working for the character

array.

(Refer Slide Time: 24:43)

So, if it works for integer it will works also for double values and this is an example where it also

same program we can run but for double arrays, arrays of double values. And only thing that you

should note is that why we are creating or passing the values into this program, we always create

object arrays.

(Refer Slide Time: 25:17)

Like in the previous last two examples the object array that we have used integer INTEGER in

capital, capital I, integer, here double, similarly string always it should be. If you declare instead

of this one say simple double, DOUBLE then it will not work you. So, basically you have to pass

an object because in case of generic class whatever the template you define, this template holds

for only objects not for any general values.

(Refer Slide Time: 26:04)

So, we have learnt about how the generic class can be declared, we have also learnt about how

the generic class with array of any type also can be controlled. Now, next example that we

should learn about whether the same declaration is valid for any other data type other than

conventional numbers data type or string data type.

For example, say user can define their own data type, say book or a student or person, now can

we repeat the same thing, that mean objects can be created, objects, arrays can be passed, they

can be printed and ordering of the objects can be made like this. The answer is, of course, yes,

because of this is the main strength of the generic programming which we can do it.

(Refer Slide Time: 27:02)

Now, here is an example for you to illustrate the concept. In this example you can see, first we

have to declare your own type of data as we have discussed here, student is a one type of data

that we have discussed, it has only name and marks floating point and this basically is a

constructor by which an object of type student can be initialized.

So, this is a user defined data type student and this is basically the similar concept for declaring a

class as a generic class, generic class. T is the template that means it can hold any type integer,

double, string as in earlier case. At the same time we want to show so that this also worked for

this type of data that means this template T can also replace or holds student and also.

Now, this is basically a object is declared year and is a generic class for a constructor of this

generic class and this is the one method that which basically to get object means it will get an

object from the collection and then return this object and print it. So, this is the idea about this

method declaration, a generic class declaration for any type.

(Refer Slide Time: 28:35)

And then we can declare a main method to use this definition and here is an example. So, this

basically is a main class, driver class, main method. Now, here we use this class that we have

discussed earlier, it is an, for an integer object, integer value that is passed to this is basically this

value. So, this i object is basically is a generic objects, which basically store the value in this

instance integer and then we just call this as a print method. So, get object is basically return and

then it print, it is there.

Now, again it also work for the string type of data, this is initialized value, the float value and its

print, so here. So, this program works for integer, this for string, this for print and in place of it if

we declare here, for example, generic class student as you see, student is a basically type we

have discussed already, this is an object of that, we created a generic and then here we initialize

passing the value. Because it needs string name and then marks as a floating point.

(Refer Slide Time: 30:12)

So, this is the example which basically explain that it works for integer object, it works for string

object, it for user defined data type and then process it. So, this way generic class, in fact, works

for you for any type of data that you can pass to a program or your program can be instead of a

special for only a specific type of data it can be made a general that is generic for, in order to

work for any type of data.

(Refer Slide Time: 31:02)

So, this is the way the generic class can be defined. And we have learnt about how a class can be

declared generic and it can be utilized. There are many more things also we have to learn and for

the entire discussion that we have made in this lecture, you can have from the link that we have

given and there are few more topics, which are treated as advanced topics so for generic class

handling is concerned, we will discuss in our next video lectures, thank you.

