
Data Structures and Algorithms using Java

Professor Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 29

Binary Search Tree

So, let us discuss about a specific binary tree, it is called a binary search tree.

(Refer Slide Time: 0:34)

So, today’s topic include how we can define a specific binary tree, namely binary

search tree the name of that tree is called Binary Search Tree. And what are the

different properties that this binary search tree holds? And then we will discuss about

how to perform the three different operations, namely insertion, deletion and traversal

on this binary search tree. And finally, we will conclude giving an application of this

type of tree.

So, it is a binary search tree. Now, let us define when a binary tree will be termed as

the binary search tree.

(Refer Slide Time: 1:11)

So, there is a precise definition, which I have mention here, if you follow this

definition, a binary search tree is a binary tree. Also, sometimes in some book it is

called a Binary sorted tree, why the name so I will tell it. But a tree binary tree will

become as binary search tree or binary sorted tree if each node in this tree satisfy,

these are the property, this property, what is this property?

The property that each node in this tree is that it needs value should be greater than

every value in the any node in the left sub tree and its value, the value of the node

should be less than any value in the right sub tree. Now, let us come to an example,

for example, any node.

So, let us start this node. Now if you see this node value 65 and this is a left sub tree

and you see this value is less than any value, any value or any value in any node in

this left sub tree. Similarly, this is a right sub tree of this node so this is a node N.

Then if you see, then the value of this node is greater than the value of any node in

this right sub tree.

Now, again, continue the same procedure to any other node, let the node B here let the

node B says 74 then if you see its left sub tree is 69 and right sub tree is this one only,

okay. Now this value is greater than this one and less than any value in this part.

So, this basically this property satisfy for all nodes. Now if it is, if it satisfies this

property that I have mentioned, if it satisfies this property, this property basically

which satisfy this property, then we can say that the binary tree in this case, for

example is a binary search tree.

Now, here is an example you can check whether this also satisfied the property of

binary search tree or not, the answer is yes. So, this is also another example of binary

search tree. Now I am sorry, this does not satisfy the property of binary search tree,

sorry. So, this basically there is a, okay. So, this does not satisfy the property of a

binary search tree because here this node is basically should be greater than the value

of any node here, it is not there.

So, this is not a binary search tree. However, this is a binary search tree. Anyway,

okay. So, we have learned about that specific property and this is the specific

property. Now, if we impose these properties into a binary tree, then it can resolve

many problems that we have encountered once while we are trying to perform

insertion, deletion and merging operation to a general binary tree where there is no

properties are there.

Now, so it is the concept now, this kind of tree is called a binary search tree because

this tree has immense application for the searching purpose. So, that means we can

quickly search an element in a binary tree if it satisfy the property of binary search

tree that is how as it is useful for searching purpose, then this binary tree is called

binary search tree.

Now, it is also called binary sorted tree, this is because if we apply a particular

traversal namely in order traversals, then output of these binary search tree will

always give you the element in the sorted order. If it is number then number should be

available as an output of ascending order of the numbers.

If it is a string again in the dictionary order like this. So, as one traversal gives a

sorted output for a binary tree then this is also called binary sorted tree. In other

words, what you can say is that these binary search tree can be applied for the

searching purpose as well as sorting purpose.

So, if you want to sort a list then idea will that you create binary search tree and then

perform a particular traversal. If you want to have a regular searching operations for a

list of data, then you have a binary search tree, then your searching can be made

easier. So, this is why the name of this tree is so that it is called a binary search tree or

binary sorted tree.

(Refer Slide Time: 6:06)

Now let us consider a few more example, and you just okay I give it that

responsibility to check whether they are they are binary search tree or not. For

example, this is the tree whether this is binary search tree or not. This is not a binary

search tree because the ordering property ordering means greater than less than cannot

be applicable to this kind of form.

So, this is not a binary search tree. However, ordering property can be applied here

because we can check that whether A is before B or after B means greater than or less

than whatever it is there then ordering and now all the ordering is applicable, but it

does not satisfy the property of binary search tree because A greater than any part of

this B does not hold good or it is less than any value. It does not hold good like this.

So, although this basically this nodes satisfied the second property that it value is less

than any value, this one but it is greater than this is not satisfied. So, this way it is

ordering is also applicable here are possible, but it is not a binary search tree. On the

other hand, if you consider this, this is an example and you can check that it satisfy all

the properties of the binary search tree.

So, it is a binary search tree. Now, this is again, the word the word is compatible, for

example, January and December we can say that January is lesser than December

because in a collecting sequence or in a dictionary order January appears before

December or whatever it is here January appear to be after December actually, sorry

January appears after December and similarly say August appear before December,

whatever it is here.

So you can see this way they were satisfy binary search tree or not, that you can check

it and that that's, okay it gives an idea that it is also a binary search tree, like.

So, now the two conditions whether the ordering rule can be applied to the node,

which basically storing which binary search tree stores, it is one it is one important

consideration. Second thing is that and if each node follows this property or not. So,

so these are the way that binary search tree can be defined.

(Refer Slide Time: 8:42)

Now, let us let us try to understand different operations on the binary search tree

different operations, namely searching we will see how it can be done given a binary

search tree and then insertion, deletion and traversing the tree. So, these are the 4

operations we will likely try to understand.

(Refer Slide Time: 8:55)

Now, searching is very simple. This is because see suppose in this example. We have

to search for an element let the element be 54 that we have to check in this tree,

whether 54 is present or not. So, searching can start place from this root node only

because this is a starting point.

Now we have to compare 54 with this node if 54 is equals to the current node. Then

we got it so search is successful and the element is present. Now, if it is not there,

then we have two ways either this sites or that site now we will follow one way,

which basically according to these because see we will we will not follow this way,

this is because if we follow all this part, then basically we will encounter only the

value, which is greater than 65 because our searching is for 54.

So, we should not follow this path, rather we should follow this path. Now, following

this path from this starting from this node we will arrive to this node 19, again, we

compare 19 and 54 and we will see that 19 and 54 it does not match. And the next two

paths, this path of this path but we should not go this path because in this path, all the

value should be less than 19.

So, no way of no results will be obtained if we follow this one. So, we will go to this

path, then we will compare 28 and when 28 is compare with 54 it is does not match.

Then we have the two options, either these sides or that side. But these sites is not a

fruitful site because all elements in this path if any than they are less than 28 but we

are searching for 54.

So, we will follow this path. Now whenever we follow this path we finally learned

that this one 57 and we can see that 57 is not the same as this one. Then we have to

two ways this one but this part has an empty. So, no way of going there. So, now we

have to only way that 50 here it is there.

Now if we find the 54 here then we can say the search is successful suppose in link of

54 and here the element maybe say 53 then definitely our search will fail here because

here we reached here and then there is no path and we did not find the elements, this

means that 54 is not present in that net.

So, in li of 54 if we can search for 53 it will give the fail case. So, this is a procedure

so for the searching element is concern. We follow the same tricks up to hundred. So,

what is the idea? Idea is, again, that we can start from here, then we have to decide

that this path or this path so 100 should be this path. Then here we should come here

and then here we should come here, and ultimately that means the search is

unsuccessful. So, this is basically the idea about that 100 is not present in this

structure.

So, this is idea about searching. And you understand that searching is very simple

because starting from the root node, we have to visit not all the nodes, but only fewer

nodes. What is the fewer nodes or which nodes it is basically at the most, which is a

longest path it is there for example in this binary search tree this is the longest path.

So, and longest path consist of so, so many nodes for example in this way 5 nodes.

So, maximum five comparison, although this node contains around 12 elements so out

of 12 only 5, so the comparison will takes very less.

(Refer Slide Time: 12:52)

So, that is why this is on faster technique. So, for the search operation is concerned.

Now so this is a search operation and this is the algorithm that I have given for your

implementation, if you want to write the program, you can follow this algorithm. And

so next is, next operation, let us consider about insertion, inserting an element into a

binary tree, more specifically this called a binary search tree. Now, you can recall we

are trying to insert into binary search tree, we could or we may not, depending on

where to because ambiguity was there.

(Refer Slide Time: 13:21)

But here you can see ambiguity is not there. Now, let us see how this binary search

tree insertion can takes place here. So, we have to insert if we do not find the element

there in the binary search tree, if we find that already the element is available or exist,

then we do not have to insert it. Now on the other hand, if it does not find it, then we

have to insert at the dead end. Actually dead end mean where your search halts

without finding the element there. So, this is called a dead end.

(Refer Slide Time: 13:59)

Now let us see how we can reach to the dead end. Here is an example that I can give

you. Say suppose this is a input binary search tree and we want to insert the node 5.

Now let us search 5 first whether 5 it is there or not? So, search will follow you can

see this path actually, this path. But here we can stop. So, this is a dead end. So, that it

means we simply okay insert the 5 here.

So, insert the 5 here means so this link fill will store that this of the new node which

store 5 for example it is like this. So, this is this is the idea about insertion. So, what

you can say insertion in a binary search tree allow unique and it is also very

straightforward and again, like binary search tree also maximum number of nodes that

needs to be compared in have to find that dead end it is a length of the maximum path,

actually.

And like say for example here also length of maximum path is 4 or whatever it is

there. So, maximum 4 nodes to be compared in this case, but in this case, only 3

nodes we have to compare whatever it is there. So, this is idea about insertion

operation in binary search tree truly both searching and insertion is very

straightforward and also very fast.

(Refer Slide Time: 15:23)

Now, let us consider the another operation, okay. This is a algorithm I have written

and then that algorithm can be considered both searching as well as inserting, the

element that at the dead end like and you can implement it, this algorithm written in

pseudo code English like sentence. So, you can easily implement it in any

programming language in Java also no exception. So, this is the insertion operation.

(Refer Slide Time: 15:49)

Now, let us consider the deletion operation from a binary search tree. Now, how the

deletion operation can be taken place, but deletion operation bit okay unlike that to

other operation like searching and insertion bit a complex, complicated, because there

are three different cases are to be there. And according to the three different cases we

have to follow.

Now so let us consider first case one case one is that now so far, the deletion is

concerned again the same. The first step is that we have to search whether element is

present or not. If element is not present in the binary search tree, then we do not have

to do anything.

So, deletion operation does not have to do there. On the other hand, if we find that

node is available, then there are maybe three cases that maybe. So, case one is that the

element is available, at leap node. Case two is that element is available in a node

which has exactly one child, either left child or right child. And second case that

element is available at a node where the node has both the child left child as well as

right child.

So, two cases are there. And depending on the two cases, our link management or

updation of the links after deleting after removing the element from the tree are to be

followed. Now, here, here that three different cases. For example say suppose you

want to delete 27.

So, it is case one because searching these 27 found it here and this is a leap node.

Now, this is a second case we have to delete 45, 45 has only the left child. So, it does

not have any right child. So, we can have the case two and case three as you can see it

has both left child as well as right child.

(Refer Slide Time: 17:42)

Now, let us see the operations, how the different operations can be taken place so for

the searching I mean, so for the removal or node is concerned. Now, so the first case,

the case is on very simple and trivial case.

So, here the last node, leap node is to be removed. Idea is that the last node removal

of last node means basically the each parent who pointing this node, the link field of

that part will be removed, for example, 24 is the parent of 27, so the link part of this,

this basically the 24, the 27 appears as a child of the parent 24 in a say right part.

So, the right link of parent 24 needs to be null and needs to be made null. So, if we

made null then this basically node is deleted and this node can be made free or written

to the memory bank. So, this is the idea about the first case, the case one, case one

really very easy or simple case.

(Refer Slide Time: 18:53)

Now, let us consider the next case, which contains the node, the node that needs to be

deleted. It has only one child, for example here 45. So, what we should do is that let

us first see who is the parent of 45. So, 35 is the parent. So, what the idea is that the

45 points to node this address will be assigned to the as this for each parent was

pointing to the node under deletion. So, this basically needs to be removed. And

instead of this, this link will point to the node that this node basically store. So, this

basically the idea.

So, this way this is the result and that you can get it. Now, here the link management,

I am telling you. And so this is a link management that it needs to be followed in case

of case two.

(Refer Slide Time: 19:46)

Now, case three is more complex. This is a possibly the toughest operation so far the

binary search tree deletion is concerned. Now, here is an example you have to little bit

follow it carefully. Say suppose do you want to remove the node say 24, 24 is to be

deleted here, sorry, I am sorry thus two cases suppose. We want to delete the node. 22

be deleted here, now 20 the nodes that needs to be deleted, it has both left child right

child.

Now, what is the procedure? Procedure is that which is the next node, next smallest

node rather, next smallest node of the 28th node with the tree now if you see the next

smallest node after 20 in this three is basically 24. So, what basically the idea is that

we just remove this node 24, rather, we can say that the node this 20 is to be replaced

by the value of the node, which is the minimum value in this.

So, if we do that means that 20 should be replaced by 24 in just simply replacing no

link manipulation here. And as the 24 is removed and then 24s parent, namely 29 who

is link fill is store for part two to link the child it is to be updated by the child of this

node.

So, this basically child of this node is 27 and we have to update the link which

basically used to point to the node on the deletion to be many. So, the, there will be so

link of this field will with this one. So, this field will be assigned by the address of the

child of the node under division, so this is the case. Now, this is the procedure that is

that takes place. So, basically now in this particular algorithm, so we have to search

we will get it after searching, then we have to find another search.

This search is basically indicating that which is the next lowest value after the node

under consideration. So, this is the idea about the deletion operations in three different

cases that we have learned about it.

(Refer Slide Time: 22:09)

And this is the algorithm that is written very precisely and algorithm learning this

algorithm, or understanding it is matter of time I will suggest you to go through step

by step, then you will be able to follow. So, this a little step that okay if you follow,

then you can write a program implementing the deletion, whatever the case that we

have mention here all three cases are basically covered here in this particular example.

(Refer Slide Time: 22:44)

So, this is about the different operations and then finally, I will quickly cover about

the traversal operation, the traversal operations, the traversal operations again, that

three different ways that we have learned about in order or post order traversal, they

can be applied there.

(Refer Slide Time: 23:05)

Now here, okay. So, so application I mean in order traversals is a same as binary tree

that we have discussed so if you can apply in order traversal so you can find one, we

have ordering the elements. And if we follow pre order another we have ordering post

order like this one.

And one important observation here that if we apply in order traversals, then the

binary search tree after the successful after the traversals it will give the output of all

the elements in the ascending order of the numbers. And in that sense, actually binary

search tree, we can suppose in other applications suppose you have to find which is

the lowest value, which is the highest value.

So, some min value and max value that also can be calculated very easily. So, if you

go left, left, left, then at the end where you can stop, it is basically the min value.

Then starting from the root. If we go to the right, right always right and then if we

finish somewhere we do not find it there, then the last elements, where we stop it is

called the right value.

So, this is basically the minimum value is the leftmost node and the maximum value

that is stored there in a binary search tree is called the right most node whatever it is

there. Now, this is also a matter of traversal actually, that you can follow a little bit

customizing the traversal you can have it.

(Refer Slide Time: 24:33)

So, these are the traversals algorithm we have studied and so far the application of

binary search tree is concerned searching is a good way of use it and another sorting

and indexing of records I mean, that is basically searching another. So, that means I

told you that all the elements is basically stored in a noncontagious location.

Now, here elements means a record and each record will be identified by a field it is

called the primary field or primary key. So, a binary search tree will store the primary

key values as a node and then a pointer from the primary key value can point exactly

to the memory location where the record is stored. So, this way we can have a very

fastest indexing mechanism to search a file where a file stores number of records.

(Refer Slide Time: 25:18)

So, these are the few applications that we can consider and for details about the

applications and then different what is called the algorithms and application there are

many more applications also of this binary discuss in detail in this book in chapter 7.

So, you are highly encourage to go through the book and study much more. Thank

you very much.

