
Data Structures and Algorithms using Java

Professor Debasis Samanta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 20 - Linked Lists using JCF

(Refer Slide Time: 00:46)

Programming for linked list using Java language, we have experienced that we can do many

things of our own. Now, today let us see as an alternative way how Java can support as a built-in

things where many things are available readily and you just simply plug and play. Now so today

we will cover about the application of linked list in your program using Java Collection

Framework.

(Refer Slide Time: 01:02)

Now today's topic include, first we will learn about where exactly which class or package in

which portion of the package that you can use to implement linked list, and with this package

how you can create your linked list, and how the different operations, mainly insertion, deletion,

and traversals can be accomplished. So, this is our today's plan.

(Refer Slide Time: 01:30)

Now LinkedList, there is a class. There is a class in the Java Collection Framework which

basically supports whatever the linked list theoretically you can give. So actually, there linked

list has been implemented in a very nice and efficient way. And you can see there is a hierarchy

of the class, how it is there. As you know, in the Java Collection Framework there is a collection

class which basically is an abstract class sort of thing, which basically design what are the

different methods that can be, can be there in any subclass of this collection class. Now, as we

can see, this collection class is basically is a class where there is, there are two interfaces namely,

list and queue.

So, list and queue is basically extend the collection class. And there is another interface deque

also, deque extends the queue class. Deque is an interface which extends queue. Now, there is

another class, it is an abstract class called the AbstractSequentialList. The LinkedList is a

subclass of AbstractSequentialList and which implements deque. So, by the process actually if

you see, LinkedList is an implementation of all the methods which are defined either in

collection or list, queue, or deque or AbstractSequentialList.

These are basically the class, these are the classes or interfaces which has its own methods and

fields and everything and all those methods are basically the abstract methods, we can say.

Ultimately, all these abstract methods are implemented in LinkedList class. And this LinkedList

class basically is a support for you to implement or realize linked list related different activities.

So, today we shall start about what exactly the contents in linked list, what are the different

methods that can be there and fields and everything.

(Refer Slide Time: 03:38)

Okay, so this is basically summary about the linked list class. As I told you, linked list class is

mainly to cater the need of linked list data structure, and this essentially is basically is a double

linked list actually. So, because double linked list can serve the purpose of both the list and both

way direction, movement direction. That is why the developer has planned it as a double linked

list only. So, it is not a single linked list.

Now, as that linked list like an array, it can contain duplicate elements. Linked list can be grow

in the same order as in the insertion order. So it is basically, if you add, it will add at the end of

the list actually. So, insertion order can be maintained. So, if you add in the order 1, 2, 3, 1 is the

first element, second element is 2, and the last element is 3, in that order. So, it maintains

insertion order. And one important observation or I mean point regarding the linked list is a it is

non-synchronized.

That means if you use this structure in your multi-threading programming, then you may not get

the synchronized manner, so it is (not) non-synchronized. And, this is the one limitation. But it is

actually not a limitation, to improve the speed up and everything, Java developer carefully

thought about that, it should not be non-synchronized. If you want the synchronized data

structure then only the vector class you have to do it.

Otherwise, the linked list implementation that we have discussed and programming, the

customized programming or programming in Java, you can do and then is a synchronized

programming you can achieve. And that is obviously, programming of your own have the added

advantage in this regard. Manipulation is faster compared to array because this linked list is

planned in such a way the insertion at any point or deletion from any position is faster than it is

in case of array. And LinkedList also, this class purpose, many other purpose to serve many

other data structure like stack, queue, deque.

And you know in the recent version of the Java, there is no class like stack but we have to rely on

only the legacy class where the stack class is defined, otherwise, queue and deque, if you want to

have. These are the other data structure that we will learn shortly after a few lecture in this

continuation of the module. We will discuss about stack and queue, there we will learn about

these other data structure. Now, if you want to implement all these data structures, then only the

linked list is the solution. There is no other class that is there to implement this.

(Refer Slide Time: 06:26)

Now, let us start first how you can create a linked list with the help of Java Collection

Framework or in other word, the LinkedList class that is there in JCF. Now, to create a linked

list, the LinkedList class has two constructors. One is a default constructors, it creates an empty

list. And, another constructor is there which can create a linked list if you pass an argument, a

collection. A collection can be an array list or is an array or any other list of objects like any

other collection. So these are the two constructors that can be used to create a linked list using

Java Collection Framework.

(Refer Slide Time: 07:18)

Now, let us see how a program you can think about using this LinkedList class that is there in

Java Collections Framework. Now first of all, you should import java dot util dot star because

this is the location of class where linked list is defined. If you do not import, definitely your

program will not run successfully, it will basically give you the compile time error because they

will not be able to resolve many methods that is there.

Now let us come to the main method which we are going to discuss. This program basically

demonstrate how a list can be created and how some elements can be added into the list.

Obviously we, we shall use the LinkedList class in this case. Now, the first step that you have to

follow is that you have to just create an object of type linked list. And as the linked list is a

generic class, so you have to tell is the collection of what type. Now, so this is basically

LinkedList, this is the class for which we want to create an object of this type.

And, this basically the template of the type that we want to use. That means we want to create a

linked list of type string, that means it will store string elements. And so this is basically the

constructor call string and this is a default constructor we have called. That means initially with

this we will be able to create a linked list the name of this linked list is ll, which is initially

empty. Now, once the list is created, we (sh), we will be able to add elements into it.

In order to add element, there are many methods we shall discuss, but one universal method that

is declared there in a collection class is called add. So, you can, we can use the add method. This

method is basically defined fully how an element can be added into a linked list following the

insertion order. So, that method is already implemented for you, you can just call. You can recall

how we can implement method of our own and you can call in a master program or driver

program because the same thing, we are writing the driver program only because no need to

define methods, no need to define class for linked list or node structure.

Nothing is there here, or everything is implicit. Now, so here you can see next few statement

which you have mentioned here to add few string into the linked list namely, Mumbai, Chennai,

Kolkata, etcetera. So, list is now loaded. Once the list is loaded, we can print the list. So there are

many ways the list can be printed. One simple most way that you can print the list is system dot

out dot print ln and then ll, ll means list. It will automatically print all the elements which are

there in the list.

Otherwise, we can use one another method which is many programmer prefers is called the

iterator. So, you have to define an iterator objects and these iterator objects, itr. We define that

this iterator data object to iterate a string collection. And so, this is a method that is defined in

the iterator class. And then this is a statement by which iterator will scan each element in the list

and print it. So, this basically printing each element and it will check that whether the collection

is (fini) exhausted or not.

So hasNext is basically check whether the next element is present or not, if not present, it will

quit the loop. So this is basically using iterator the code you have to use all the time. So this once

you are habituated this code, it become very easy. So, this is called the iterator. This is the one

way to traverse a linked list. And here we have used, during the process of traversal only printing

but you can use many thing. Like, so you can count what is the length of each string is or

whether it is a palindrome or not.

So, you can call some methods, define some method of your own and can add it. So, this is a

very simple one demonstrable program that, that is for just only an illustration and with this

illustration therefore, I hope you have to, you are able to understand about how a linked list can

be created and how the same list can be loaded with some elements of your own. So, this is a

simple way that we can do it.

(Refer Slide Time: 11:41)

Now, there are many more things in the store. Now, let us see how a linked list can be

maintained using user-defined object. User-defined object means there are some standard object

like integer or string, double, float. These are the classes are there, we can create a collection of

all these objects of this type. Now, in this example, we shall study about how our defined class

and according to this class a number of objects can be stored in a linked list. Here, let us consider

a program which basically define a class called Student.

This is our own defined class, we are defining a class. This class has two fields, one is called

name and another is called marks. Name is of type string and marks is of type double. And, this

is a constructor to create an instance of this class. So, it is basically if you want to create an

object, you have to pass what is the name and what is the marks, and accordingly object will be

created. And this is another method we have declared which basically print an object.

So, it will print the name and the marks. So, this includes the definition of a user-defined class

called, Student. Now, what we want to do is that, we want to create a number of Student’s object

and all those Student objects we want to store into linked list. So, this is basically our objective.

Now for this, let us see what is the program that you can do it. So the program is that, we have to

create a linked list of type student, and then we can go on adding and then finally if you want to

print you can print, that is all.

(Refer Slide Time: 13:29)

So this is basically the program, you can check it. This is the one simple program which

basically create a number of Student’s object and all the Student object will be stored in a linked

list. Now to do these things, first this is the main method, and here we first declare an array. This

array basically is declared to store the number of Student’s objects. So here we have declared an

array of size 5. That means we can accommodate maximum 5 Student’s object in this array.

Now here, once the array object is defined, we just okay insert the 5 different Student’s objects

into the array, starting from 0 to 4. So in the zeroth location of this array, we store one object,

Ram is the name and marks is 79 point 6 and so on, so on. So, five different objects are created

and those objects are stored in the array. The name of the array is sArray. Now our next objective

is basically using this sArray. That means we want to put all the objects which are there in

sArray into a linked list.

Now for this things, we should refer to the second constructor which basically allow to, create a

linked list passing a collection as an argument to the linked list. Now, so the next part of the

program, so this is basically in continuation of this, next part of the program which basically

looks like this. You just check it. We create a LinkedList of type Student. And this basically you

see when we create this list, we pass the collection. Now, this collection is basically sArray, so

we collection as an array list.

So, there is a method that is defining class arrays that you have already know that arrays, array

list and everything. And for this arrays class, there is a asList. That means, this array will be

considered an asList and then this is basically a collection of arrays. Now, we pass this collection

into this constructor, this constructor. Then this constructor will automatically load all the nodes

into the list with the objects that is there in sArray. So, that means that in this case, the linked list

will in contain 5 nodes and in these nodes the objects namely Ram, Rahim, John and everything

will be stored there.

So, this way you can see how easily and how very efficiently you can create a linked list having

an, having a collection already available. Now, after these things, this is basically the code. This

code is basically traversing the linked lists that you just have created. And this basically, the way

that I can create an iterator, this iterator of type Student objects. So iterator object is created for

this linked list, so ll dot iterator and hasNext. And then it basically read an object from the list.

That object is temporarily stored in temp.

And we finally call the printData method. printData method basically for an object how we can

print. Alternatively, without these things also we could write system dot out dot print ln and then

temp, that also you can do it, so that it will print also. But it is not the good idea to how to print a

particular object. But this is a nice idea that how the using the printData method of the objects

itself and we can print it.

Anyway, so this is an example by which you can understand that how a linked list can be

created. That linked list not necessarily for a particular type, it can be of any type, and then the

linked list can be manipulated. Manipulation whenever, manipulation here, so for the

manipulation we only create a LinkedList and then print it. But other manipulation are there, it is

basically regarding insertion, deletion and other operations.

(Refer Slide Time: 17:39)

Now, let us see how the different operations, we the LinkedList class that is there in JCF can be

done. So, the operation basically that we are going to discuss, traversing we have learned about

little bit. Mainly we will focus about insertion and deletion related operation. And there are some

other miscellaneous operations are there, that also try to cover.

(Refer Slide Time: 18:05)

Now, let us first consider how the insertion can be done in the LinkedList. Now, in order to this

insertion, LinkedList stores many methods for the purpose. Now, we have already experienced

with one add method. But add is not the only method, there are some other methods also. Now,

whatever the other method which are there, which are defined there in the LinkedList class is

listed in this table. Now, you can see the add method, already we are familiar to. So add method

is there.

Now, add method has another form also. In the first form, add and then element, which element

you want to add into the list. Now, the next method, add at a particular location in the linked list.

So, it is basically insert at, at a given position, so index you can specify. So 10th index or 5 index

or whatever it is there; and there is, okay. So, this is basically mentioning the index in the, in the

LinkedList, you can add an element which will be passed here. And, then add all. So, add all

basically if you want to add a collection into an existing linked list so it will add, it is just like

merging.

So, collection is basically is another list you can say, not necessarily in the linked list form. It can

be linked list itself, because linked list is also a collection. So, these collections imply any other

linked list or other collection like array list, arrays or something else so or vector, whatever it is

there. So, any collection can be considered here as an argument and if you pass this value or

object as an argument, then it will add. So, it is essentially merging operation you can see. Now,

here the addAll has another version. It basically, you can add a set of elements into the linked list

at a particular location.

So here in this method the addAll will add at the end, but you can add at any locations in the

linked list. Now, so, these are the basically bulk operation you can say, add as a group, right.

Now, there are again addFirst and addLast, it is just like insert at front and insert end like. Insert

font, insert end we have already experienced. So it is basically in JCF, they are called addFirst

and addLast element. So, these are the basically methods which are there in, in LinkedList class

to help you to insert elements into the list.

(Refer Slide Time: 20:43)

Now, let us have some example which basically okay we can see how the different methods can

be utilized in a program. So, this is one example. I gave the name as a linked list insertion demo.

So, this program tell you, how the different way you can add elements into a linked list. So, first

what we should do? We should create a linked list, right. And here in this example, we created a

linked list of type string, name of the linked list is ll in this case.

Now, here we can call many methods which are defined there in LinkedList class and which we

have just now learnt. For example, add method, add is an object, addLast you can understand.

So, this will add at end. addFisrt, so Delhi will add before Mumbai, Chennai, Kolkata, like. Add

2, this basically tell that it will be added into the 2nd location, so 0,1, 2nd. That is the 3rd

location we can say and like this. So there are few more things also we can go on.

Now, so there are few more lines in this code. Now okay, so we have done the adding and after

adding you can, you may be interested to see exactly how your linked list look like. There is a

simple print or printing the list or traversing the linked list, again using the iterator and you can

see. Alternatively, as I said that system dot out dot print ln linked list ll, you can see. This is a

very compact one, that way also you can print. But you can find the two printing in a different

ways, but you can see.

You can just have an experience about how the two print work for you, one using iterator and

one using simple print ln as the entire list also. Now anyway, so our objective was not to print

actually, our objective is to how the different way the element can be insert, insert into a linked

list. We have experienced few, not addAll and everything. That again you can think for writing

programming, you can create a linked list and then pass an argument as an linked list. addAll can

be done at any specific location. All these things you can try of your own. Practice, right and you

can check that how the different methods are working for you.

(Refer Slide Time: 23:06)

Okay, this is an example actually. I made it ready for you, how a list can be added. It is just like

merging sort of thing. Now, let us, okay consider this program first. So, here we create one

LinkedList of type string and the linked list is ll1. And we add some elements into the LinkedList

where 3 nodes are inserted into the LinkedList of like this. Next, we create another LinkedList.

Let the name of the LinkedList is ll2 and we add few elements into the list. Okay, so two linked

lists are created.

Now, we can do many things here. We can merge, ll2 can be merged after ll1 or vice versa. Or

ll2 can be merged in ll1 in a specific location, addAll is mentioning where you want to add. That,

that kind of things are there. Now, let us see the next of the programming, how we can do it?

Now, here you can see ll1 add ll2. It is basically you see equivalent to merge, ll1 merge ll2 so ll2

list will be merged after the list ll1. So ll2 will be appended after ll1 like. And, after merging you

can print.

Now, here create another LinkedList, say ll3. Now, this linked list again of type string, so we can

create another linked list, we can add some element into it. Now, here insert ll3 at a specific

position of ll1. Ll1 right now, this is basically merging of ll1, ll2 both. Now we want to insert

this ll3 at the index of 3, that means the 4th location of the list ll1, and after adding at a particular

specific location, if you can print you can see how linked list grows automatically.

Now, after the LinkedList, so this way LinkedList is basically expanding, and this is basically the

maintenance of a LinkedList by performing several insertion operation. And then you, you can

can add or delete or you can perform any operations on to the ongoing linked list that you are

processing. So, this is the idea about how the insertion as a whole can be achieved using

LinkedList class in Java Collection Framework.

(Refer Slide Time: 25:33)

Now, surely we have learnt about insertion and now we should learn about deletion operation,

how the node can be deleted from a LinkedList. Now, for the purpose of deletion, like insertion

there are many methods are defined. Here I have listed those are the important methods. Now,

here you can see the poll method. Now, poll method is basically it, it removes the first element of

the list. Now, pollFisrt is basically similar of the poll. Actually, poll, pollFirst both are defined,

they are in collection and they are declared in collection and implemented in LinkedList class.

That is why both implementation is there, that is why they are in 2 different form. But theit, their

functionality is same, they, they will do same thing. Absolutely, no difference between poll and

pollFirst, by default poll is, I mean removing the first element itself. Now, in contrast to

pollFirst, there is a method called pollLast. As the name implies, you can understand. It basically

deletes the last element from the list. And, pop is a one method. It basically, pop means it is also

similar to the poll. It remove the first element.

Now, you may be a little bit surprised about why so many methods and whatever it is there, you

can recall this LinkedList class also implements deque. Deque is an interface which extends

queue. And for the queue or stack implementation everything, all those methods are required. So

that is why they have implemented. Otherwise, absolutely no problem, you can use only poll.

You may be limited with only using poll, pollFirst or whatever it is there. Now, there is again

push method. push method is similar to insertion method actually.

It basically adds some element into a list. So, this is not related to deletion of course, it is related

to rather insertion. Then, remove is very similar to the poll again. It is used to retrieve and

remove the first element of a list. So poll, the pop, remove, they are basically same functionality.

Now, remove int index. You can understand what it will do. It will basically remove an element

in a, from a particular location. So, it is just like delete key like loop, okay? So, delete at any

position like.

And, there is also boolean remove Object o. That means you can specify a particular object

which you want to eliminate or remove from a list. So, you have to pass the element and then

remove. And after the successful operation, it will return true or false. True implies that

successfully the element has been deleted. And if false, that it did not because either the element

does not exist or some error occurs here. So, these are the few methods. There are few more

methods in this context regarding the deletion are there.

These are a little bit okay risky method I can say because it will, I mean delete as a whole sort of

thing like clear. So, clear method as you can understand, it will basically remove all the elements

from the LinkedList. Once it is cleared, means you will not be able to get back it. Otherwise,

removeFirst and the removeLast, you can understand that it will remove the first element from

the LinkedList, it will remove the last element from the LinkedList. Now, there are two different

versions also, removeFirstOccurence.

As you know, a linked list can contain duplicate elements. So, same element may occur several

times. So, if you call this method, it will remove the first occurrence. And, opposite to this first

occurrence, LastOccurence will remove the last occurrence of the things. So, these are the few

methods related to delete, deletion are defined there in the class LinkedList. Now, let us have a

quick demo of a method, a program which basically exercise the different methods just we have

learnt.

(Refer Slide Time: 29:30)

Now, this is the one example is basically deletion from LinkedList demo. First, we have to create

a linked list and in this case we create a linked list 1 of type string and the number of elements

are added into the linked list which is like this one. So finally you can print the linked list that we

have created. Once, the linked list is created then you can perform all operations related to all

sort of insertion and deletion, but here we will limit our discussion related to only deletion

operations.

Now, let us see lll, the list which has been created with 6 elements in it, how the different

deletion can be done here. We have done several deletion operation. Now first we call remove H.

It basically removed the first element, remove the objects that means H. So if H is present there,

it will remove and it will return boolean like, okay. So, it basically removes the element H. And

after removing, you can print it. You can see that whether removal is successful or not.

Then remove 0, here we are passing index. So, this means that it will remove the element which

is in the zeroth location, in there is a 0 or 5 or whatever it is there. Now, here by mistake if you

give a remove 100, then it will return false or it can throw an exception that okay this is not a

valid one. So you have to be a little bit careful about whether the element is present or not. If it is

present, then you try to remove it. Otherwise, it throw exception.

Now, here you can see we create another linked list of again same type string. Let the name of

linked list say ll2. We add few elements, add all the elements into it. This is just okay as I said

that you can perform any operations of your, as you want, as you wish. And then here you see ll1

removeFirst, you can understand. It is basically similar to removeFirst, poll or pollFirst, like this

one. And these basically okay, after the performing this operation, it will print the list. So, there

are few more again, you can write.

You can see exactly how the different other operations can be carried out. For illustration, I have

added many more, many more method call; you can do also. This is just for your practice that

you can see the essence of the Java LinkedList collection that is there in JCF, so that how it can

be done. So removeLast application, removeAll, removeAll means it will delete all elements, it is

equivalent to clean. Then you can add again, into this list is now empty. You can add the more

element into the LinkedList 1. And here you see, ll1 removeAll ll2.

That means it basically remove, now this is a little bit okay, peculiar operations here. It will

remove from the list ll1 which those are the objects which are basically present in the LinkedList

2 that is for the objective. Then you can check it, how it is working. Then,

removeFisrtOccurence, removeLastOccurence, this means multiple or duplicate elements are

there. It will remove the first or last occurrences there. Now, clear is basically another very

dangerous operation to do because it will remove all the elements. So these examples show, how

the different way the deletion operation can be done in a program.

(Refer Slide Time: 30:57)

And regarding traversal of a LinkedList, we are already familiar to that how the different

traversals can be done. Mainly iterator or simply even for loop also you can add it, for loop just

like traversing one this one. But iterator is the most convenient way to traverse a LinkedList

actually. Now, here we can see we create a LinkedList called lCountries, add some element into

it and then finally, we can see how the list can be traverse using iterator.

We can create another list, add some number, we can again traverse. But here you see traversal

can be done in different ways, 2 different way mainly. Traversal can be done from front to end.

Oppositely, the traversal also can be done from end to front, in the reverse order. Now see there

is no reverse method defined for the class LinkedList. Now there is another added advantage

shows that some methods which are not there, you can define of your own, if you go for custom

programming means programming of your own.

Now, but descending iterator in some sense can okay, can facilitate that methods that how we

can iterate in a opposite order, in the order the elements are inserted, opposite to that one. So, this

is the one example that you can think about you (insert) in a, visiting the elements or visiting the

list in a descending order. So, for this the method is like this, descendingIterator, descending. If

you write simply iterator, it will by default is a ascending order or in the same order from front to

end.

(Refer Slide Time: 34:39)

And there are certain miscellaneous operation. I will quickly go for, we have little bit short time

right now. Miscellaneous operation means we can copy, add or whatever it is there. Let us first

take a quick review demo of this one. We create first LinkedList Letters and add some element

into it. After adding some element, we can perform many operations, the few operations that we

have mentioned here. Okay, add operation, you are already familiar to.

Now, there is another contains. It is basically search. That means, if you want to search a

LinkedList with specifying a particular object that means, it will search the LinkedList that you

have created whether Z contains or not, it basically gives you. And, then size also another

method that you can call. It basically says that how many elements are there in the LinkedList at

present. Now, get 11, it basically says that whether 11 is present there in the LinkedList or not.

Like get, you can say set.

Set means the 11, the element which is present there, you can set either different. So you can

modify particular objects by the set method also. So, these are the few methods which are there

defined in the class. It is called the collection. They are declared and in the LinkedList class they

have been implemented are useful. So for the detailed description of the class, you should refer

to the Oracle tutorial document where you can find, or the many methods are there.

(Refer Slide Time: 36:02)

Now, these are the final example. With this example, it is basically similar to the Student. We

have created a user-defined class called Book and we can created some objects of the class Book

and then we can add the Book objects into the list. So, this program you can practice again. We

create a list called Library of type Book, add some Book into it and we are going on adding and

then finally we are printing. Here you can see printing using for loop. So, this is an alternative to

iterator, how the for loop can be used to print an object like. So, this is the, the usual way by

which the another, another programmers’ convenient way by which a list can be traverse also.

(Refer Slide Time: 36:48)

Okay, so these are the different methods that we have discussed. Those are there in LinkedList

class and it is useful for your, okay program so that you can use. It is an handy because readily

available, so the readymade things are there. If you want to have more discussion about

LinkedList class, I should recommend you to go through this document, the Oracle official

websites. There are tutorial is there.

And all the programs that I have used in these slides, you can get it from there and many more

discussion also there which is basically easy to read. I should advise you to check the both the

links and learn many more things from there. Okay, with these things I would like to remain

here. We shall discuss about other data structure in the next class. Thank you very much.

