Data Structures and Algorithms Using Java
Professor Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 10
Topic: Java Legacy Classes

In the discussion of collection framework, the discussion will not be complete if we do not
include Java Legacy Classes. Actually Java Legacy Classes, | understand that it is not so much
useful at the moment because the more better facilities is basically provided by the Java
collection framework there, but Java Legacy Classes still many programmers like it.

(Refer Slide Time: 0:59)
@ @ ‘_

» Constituents of Java Legacy Classes
» Interfaces

» Classes
» Constructors

» Methods

There are two reasons for this, first of all it is fast, this means that it is very useful but second
thing is that it has a more, what is called the sophistication in the context of the synchronized
versus non-synchronized manner. What exactly we want to point out is that all the collection
frame, collections that we have discussed under the categories of Java collection framework and
Java map framework, they are basically not synchronized whereas all the collections if you
maintain using Java Legacy Classes then they are synchronized.

Now, what is the difference between synchronized collection and non-synchronized collection?
The synchronized collection means as you know the parallel execution so that means if two or

more programs access the same collection, which is very much common in distributed

programming because if you store your collection in a server and then there are request from the
different client that collection needs to be access, either modify or whatever it is there, then

parallelism or concurrent execution is an important issue.

So, if you want to have your concurrent execution for your collection then definitely the
collection framework, the latest collection framework is not suitable because they are non-
synchronized, whereas the Java Legacy Classes, the collection to according to this Java Legacy
Classes are synchronized that means the parallel program execution is possible. Now, let us, we
have a brief idea about the different constituents in Java Legacy Classes.

(Refer Slide Time: 3:06)

<=" The background

* Prior to the JCF (Java 2 and onward), the classes were known to meet the need
as the JCF do for us are termed as Java legacy classes.

+ The Java legacy classes are mentioned in the following.

[Dictionary I Hashtable I Properties I Stack I Vector]

* In addition, there is one legacy interface called Enumeration.

So, here in this lecture we will little bit elaborate the different compositions. Now, before going
to know about the different elements in it, | just want to say that what exactly the history of
creating Java Legacy Classes is there. Now, prior to Java 2, actually Java Legacy Classes is the
only ways handle a large collection and to facilitate the older collection sets. They proposed

many classes, the Dictionary, Dictionary is very similar to the map that we have discussed.

Then Hashtable, it is basically is an another, what is call the way of viewing, it is just like a hash
concept, that means if you want to access a particular object, then you have to have the key value
for that object and then hash. It is just like map only. Properties is also similar map, so
Dictionary, Hashtable, Properties, basically same as map only. And then Stack and Vector, Stack
is basically the concept of just Queue and then Stack concept those are there, and Vector is

basically a simple the index collection.

And here you can note that there is no more collection view using linkeds, index or sequential or
tree form or whatever it is there. So, in that sense Java Legacy Class was not so exhaustive or
elaborative or we can say it is not so much efficient compared to this a current the collection
framework facilities is there. And now interface, again it is very simple most, it does not have
many interfaces, only all classes are there, only one interface is there, this interface is called

enumeration.

(Refer Slide Time: 5:08)

<=" The background

+ In fact, Java legacy classes include the classes and an interface that provided
an ad hoc method of storing objects.

+ Further, when Java Collections Framework were added in J2SE 1.2, the original
classes were reengineered to support the collection interface.

+ Furthermore, all legacy classes and interface were redesign in JDK 5 to support

Generics.
+ The Java legacy classes are not deprecated till this time and interestingly there =
are still codes that uses them. e
* Last but not least, none of the JCF classes are synchronized, but all the“legacy % -
classes are synchronized. This may be a reason that the Java legacy classes are
still in use.

So, this is basically the idea about this one and this is basically main important that user still
likes not only because of its simplicity, but because of that it allows you to access the collection
in a synchronized manner. And as it is synchronized manner, so complexities those are there, in
case of collection framework is not here, or in other word, collection framework is so complex,
so different mechanism, or so different structures or views are there, so the synchronization
implementation a bit difficult that is why Java developer carefully ignore it but it retains in its

Java Legacy Classes.

(Refer Slide Time: 5:48)

<= Interface in Java legacy classes

* Enumeration interface defines method to enumerate (obtain one at a time)
through collection of objects.

+ This interface is superseded (replaced) by Iterator interface.

* However, some legacy classes, such as Vector and Properties define several
methods in which Enumeration interface is used.

* It has the following declaration:
interface Enumeration<E>

where E specifies the type of element being enumerated.

R

<= Methods declared in Enumeration Interface

Method
boolean hasMoreElements() | It returns true while there are still more elements to extract,
and returns false when all the elements have been enumerated.

Object nextElement() It returns the next object in the enumeration i.e. each call to
nextElement() method obtains the next object in the enumeration. It
throws NoSuchElementException when the enumeration is complete.

Table 10.1: The methods declared by Er it interface

Now, let us first discuss about the enumeration interface. It basically create an enumerated
collection, enumerated collection means we have that user define datatype that enumerated type,
and it basically useful for creating a new enumerate, it is an interface so no object of this type
can be created but if you can create any collection that can be stored in a enumeration list

actually, that is the way that you can do it.

And it has basically main purpose about traversing a particular collection. So, for this traversing
there is a methods, those are there, is an interface method, all these interface methods are
basically available to other methods, so it has more elements and next element are the two

methods are there.

(Refer Slide Time: 6:36)

Class Vector

<= Class Vector

* Vector issimilartoArrayList which representsa dynamic array.
+ There are two differences between Vector and ArrayList.

1. Vector is synchronized while ArrayList is not.
2. It contains many legacy methods that are not part of the JCF.

* With the release of JDK 5, Vector also implements Iterable.
* This means that Vector is fully compatible with collections, and a Vector
can have its contents iterated by the for-each loop.

* Vector is declared like this:

class Vector<eE>
Here, E specifies the type of element that will be stored.

Now, let us see the class vector. It is a very important one on concept, this concept later on has
been incorporated in Java collection framework as the name there is called the ArrayList. So,
which is ArrayList in Java collection framework is basically the vector in Java Legacy Class.
Now, vector has very simplicity, vector is basically an array, that means a indexed mechanism to

store the data.

(Refer Slide Time: 7:08)
DT Ll 1= B

<= Constructors declared in Vector class

Constructor Description
Vector () This creates a default vector, which has an initial size of 10.
Vector (int size) This creates a vector whose initial capacity is specified by size.
Vector (int size, int incr) This creates a vector whose initial capacity is specified by size
and whose increment is specified by incr. The increment [A

specifies the number of elements to allocate each time when a

vector is resized for addition of objects. '
Vector (Collection c) This creates a vector that contains the elements of collection c. = 4
Table 10.2: The constructors defined by Vector class - = A4
=y O

You can store any store any type of objects into this vector and it has only few simple what is
called the constructors, the default constructor you do not have to mention anything, it will create
a collection of type vector and then if you can mention the size of the vector, initial size. You can
also mention initial size and by which the increment, that automatically the vector will grow.
Also a vector can be created, a collection of type vector can be created having an existing
collection say C. So, if you can give an input of the existing collection then a vector can be

created then. So, these are the different constructors under this vector class.

(Refer Slide Time: 7:55)

<= Methods defined in Vector class

Method Description

void addElemnt (L element) The object specified by element is added to the vector.
Returns the capacity of the vector.

Returns a duplicate of the invoking vector.

Returns true if element is contained by the vector, and returns false if it is
not.

The elements contained in the invoking vector are

copied into the array specified by array.

Returns the element at the location specified by index.

Returns a of the elements in the vector.

Sets the minimum capacity of the vector to size.

Returns the first element in the vector.

Returns the index of the first occurrence of element. If the object is not in
the vector, -1 s returned.

Returns the index of the first occurrence of element at or after start. If the
object is not in that portion of the vector, =1 is returned.

“x) | Adds element to the vector at the location specified by index.

Returns true if the vector is empty, and returns false if it contains one or
more elements.

Table 10.3: The methods defined by class (continued...)

Returns the last element in the vector.

Returns the index of the last occurrence of element. If the object is not in the
vector, -1 is returned.

start) | Returns the index of the last occurrence of element before start. If the object is

not in that portion of the vector, -1 is returned.

Empties the vector. After this method executes, the size of the vector is zero.
Removes element from the vector. If more than one instance of the specified
object exists in the vector, then it is the first one that is removed. Returns true if
successful and false if the object is not found.

Removes the element at the location specified by index.

The location specified by index is assigned element.

Sets the number of elements in the vector to size. If the new size is less than the
old size, elements are lost. If the new size is larger than the old size, null
elements are added.

Returns the number of elements currently in the vector.

Returns the string equivalent of the vector.

Sets the vector’s capacity equal to the number of elements that it currently
holds.
Table 10.3: The methods defined by Vector class

Now, so far method is concerned | again reiterate that all the methods are very similar to the
method that we have discussed in the context of Java collection framework that is there in
collection interface, like here add element, capacity, then cloning. Cloning means if you want to
create from the vector to new array. If you given an array as an object, you can copy all these

object into a vector collection that methods is there.

And then like insert, indexOf, knowing the status, whether a particular vector collection is empty

or if you want to remove an element, if you want to see what is a current size, all these things are

basically are there. So, all these operations related to the insertion, deletion, traversal, and

modification and knowing the status, so these methods are defined there in vector class.

(Refer Slide Time: 8:51)

Class Stack

Now, you can note one thing the stack. Stack is very important data structure but if you recall the
Java collection framework, there is no explicitly define any collection type stack, only queue is
there, there is no stack like there in there. This is because queue is basically planned in such a
way that using this queue as a collection you can use the queue as a stack, you can queue as a
gueue, You can queue as a priority queue, you can queue, use queue as a double ended queue or
deck, so that is one form, but it can be used to facilitate many other what is called the

requirements.

But here the same thing it is stack, here stack is the only one representation, is a collection, but it
can be used to use it as a stack as well as queue, and then priority queue. So, that is why here
queue is not mentioned explicitly, whereas in Java collection framework stack was not

mentioned explicitly.

(Refer Slide Time: 9:59)

=" (lass Stack

* Stackisasubclass of Vector thatimplements a standard last-in, first-out stack.
+ Stack only defines the default constructor, which creates an empty stack.

* It follows last-in, first-out principle for the stack elements.

+ With the release of JDK 5, Stack was retrofitted for generics and is declared as

shown here:
class Stack<E>

Here, E specifies the type of element stored in the stack.

<= (Constructors declared in Stack class

C Ty
P
Stack() This creates an empty stack

Table 10.4: The constructors defined by St ack class

Now, stack is basically to, I mean, enforce one policy, it is called ‘last-in, first-out’ policy, that
mean the element which will be insert last will be deleted first, you cannot do the deletion in any
order, it is thus, order is the order of insertion deletion like and then it can also includes any type
of objects in it irrespective of whatever it is there. And it has only one constructor, the default

constructor to create a stack, we do nor have any other constructor there.

(Refer Slide Time: 10:32)

<=" Methods defined in Stack class

boolean empty() Returns true if the stack is empty, and returns false if the stack
contains elements.

E peek() Returns the element on the top of the stack, but does not remove it.

E pop() Returns the element on the top of the stack, removing it in the

process.
E push(E element) Pushes element onto the stack. element is also returned

int search (Object | Searches for element in the stack. If found, its offset from the top of
element) the stack is returned. Otherwise, -1 is returned.

Table 10.4: The methods defined by Stack class

Note:
Stack includes all the methods defined by Vector and adds several of its own,

shown in Table 10.4 below.

And so fact method is concerned, very simple method, the push method is basically to add an
element into the stack and then pop element is basically return the element at the top and it also
remove the element once the pop operation is carried out. Now, peek operation just like is pop, it
basically you see the value but it will not remove the element from there and it will also check
whether stack is currently empty or not by means of empty method it is there. And obviously
search method is there by which we can say whether particular element in the stack or not. So,

these are the only few simple most methods are there in the stack class.

(Refer Slide Time: 11:18)

<= (lass Hashtable

+ Like HashMap, Hashtable also stores key/value pair. However neither keys nor
values can be null.

+ There is one more difference between HashMap and Hashtable that is
Hashtable is synchronized while HashMap is not.
* Hashtable was made generic by JDK 5. It is declared like this:
class Hashtable<K, V>

Here, X specifies the type of keys, and V specifies the type of values.

Now, class Hashtable and subsequently Dictionary, Properties, whatever are there in the Java
Legacy Classes, they are basically the hash content | means the objects along with the key values
are to be mentioned there. So, Hashtable has the two different type K and V, and here K can be
of any type and V can be of any, V is of any objects, so basically the concept is the same that is

there in map, it is also useful here in Hashtable also.

(Refer Slide Time: 11:56)
D A Rl i B R

Constructors declared in Hashtable class

{rl

Constructor Description

Hashtable() This is the default constructor. The default size is 11

Hashtable (int size) This creates a hash table that has an initial size specified by size.

Hashtable (int size, float fillRatio) |This creates a hash table that has an initial size specified by size and a fill ratio

specified by fillRatio. This ratio must be between 0.0 and 1.0, and it determines
how full the hash table can be before it is resized upward. Specifically, when
the number of elements is greater than the capacity of the hash table
multiplied by its fill ratio, the hash table is expanded. If you do not specify a fill
ratio, then 0.75 is used.

Hashtable (Map<? extends K, ? extends |This createsa hash table that is initialized with the elements in m. The capacity
V> m) of the hash table is set to twice the number of elements in m. The default load
factor of 0.75 is used.

Table 10.5: The constructors defined by i tat class

Now, if you want to create a Hashtable according Java Legacy Class, there are few constructors
that you can follow, the default constructor without specifying any arguments and it basically
create a collection of Java Legacy Class of default size 11. And then size also you can mention,
whatever the size for the better memory utilization and also at the same time size and feel ration
that mean in which rate the Hashtable collection can grow automatically and also it can be
created using upper bound specifying the keys and as well as object. So, upper bounded

argument object can be there, so this is the last constructor.

(Refer Slide Time: 12:43)

<= Methods defined in Hashtable class

Method

Description

void cle

ar()

Resets and empties the hash table.

Object

clone()

Returns a duplicate of the invoking object.

boolean contains(Object value) |Returns true if some value equal to value exists within the hash table.

Returns false if the value isn’t found.

key)

boolean containsKey (Object

Returns true if some key equal to key exists within the hash table. Returns
false if the key isn't found.

value)

boolean containsValue (Object

Returns true if some value equal to value exists within the hash table.
Returns false if the value isnt found.

Enumerat

ion<V> elements()

Returns an of the values contained in the hash table.

v get (0b

ject key)

Returns the object that contains the value associated with key. If key is not
in the hash table, a null object is returned.

Table 10.6: The methods defined by Hashtak

class (continued...)

<= Methods defined in Hashtable class

Method

boolean isEmpty()

Returns true if the hash table is empty; returns false if it contains at least
one key.

Enumeration<K> keys()

Returns an enumeration of the keys contained in the hash table.

V put(K key,

V value)

Inserts a key and a value into the hash table. Returns null if key isn't
already in the hash table; returns the previous value associated with key
if key is already in the hash table.

void rehash()

Increases the size of the hash table and rehashes all of its keys.

V remove (Object key)

Removes key and its value. Returns the value associated with key. If key is
not in the hash table, a null object is returned.

int siz

el)

Returns the number of entries in the hash table.

string

tostring()

Returns the string equivalent of a hash table.

Now, the methods are very similar to the map methods those are

Table 10.6: The methods defined by Hashtable class

there or we have already

discussed like clear, clone, contains, containsKey, containsValue, and then get, and then put,

then the method is basically called isEmpty of whatever it is there. So, those are the very

standard method by which you can access elements, can modify the entries in the collection and

then know the different status or traversing the collection.

(Refer Slide Time: 13:22)

<= (lass Properties

* Properties class extends Hashtable class.

Itis used to maintain list of values in which both key and value are String.
One advantage of Properties over Hashtable is that we can specify a default
property that will be useful when no value is associated with a certain key.

-

In Properties class, you can specify a default property that will be returned if no
value is associated with a certain key.

-

Properties defines the following instance variable:

Properties defaults;

Now, Class Properties, Properties very similar to Hashtable, it is very similar in the sense that it
basically use the key and value pair but there is only one difference is that for the Properties key
values as well as object values are to be string type only. So, that is the only difference otherwise
it is there. So, which you can implement using properties can be utilized using Hashtable but

opposite is not possible.

This is because the Java initially sees everything as a string, so if you can represent a number as

a string and user define object also as a form of a string, a floating point values also as a string

and there is a facilities by which Java can allow a programmer to convert a string to a integer

values or a floating point values or a Boolean values or any other type of values.

So, string is basically in the sense transfer, convertible from one from to another. Likewise an
integer number also can be converted to string and whatever it is there. So, this mechanism is
basically exercised here so the Properties is basically has stable, but with the constant that both

key and value are of string type.

(Refer Slide Time: 14:43)
LR T

<= Constructors declared in Properties class

Constructor Description
Properties{) This creates a Properties object that has no default values

Properties(Properties propDefault) | This creates an object that uses propdefault for its default values.

Table 10.7: The constructors defined by t ass

Now, so there are two constructors only, one is the default constructor, so create a collection
without any values in it and then there is a another is that given an existing properties if you
create a new properties then you can create it, so these are the two ways the constructors are
there in for the Properties class.

(Refer Slide Time: 15:06)

<= Methods defined in Properties class
Method Description
String getProperty(string key) Returns the value associated with key. A null object is returned if

key is neither in the list nor in the default property list.

Retums the value associated with key. defaultProperty is
retumed if key is neither in the list nor in the default property list.

Sends the property list to the output stream linked to streamOut.

Sends the property list to the output stream linked to streamOut.
Inputs a property list from the input stream linked to streamin.

Inputs a property list from the input stream linked to streamin

eam streamin) Inputs a property list from an XML document linked to streamin.

Returns an enumeration of the keys. This includes those keys
found in the default property list, too.

Table 10.8; The methods defined by [class (continued...)

And the methods are basically almost same as the Hashtable methods in addition to its there are
few methods, obviously those methods are for internal conversion from string to values and
values to string and vice versa, so those methods are mentioned here. So, one is basically get
property, it basically return a string, that means what is the property of a key values it is there

and then there is a list also, it will list all the key values that is stored in there.

Similarly, load, and there is another is that, so also from the file you can create objects and then
store them as a map like means Properties, so there are few methods in which they are using
inputStream and outputStream. Those things are basically the advance concept well the file input
output or data input output or inputStream outputStream needs to be considered, so it is basically

is versatile.

Properties are very huge so far compared to other classes those are there in Java Legacy Classes
because initially Java gives enough importance to string only, therefore, storing an efficient

manner according the older version of Java is basically using the properties only.

(Refer Slide Time: 16:21)

<= store() and load() methods

Note:

1. One of the most useful aspects of Properties is that the information contained in a Properties
object can be easily stored to or loaded from disk with the store () and load() methods.

2. Atany time, you can write 3 Properties object to a stream or read it back. This makes property lists
especially convenient for implementing simple databases.

And there is another store and load methods also allows the programmer to store and load data, |
mean storing data and loading from data from the external memory also, store and load is very
useful method for external, whatever the other methods are basically from the internal memory

or primary memory but store and load for the secondary memories.

(Refer Slide Time: 16:44)

Now, there is another class Dictionary. Dictionary class is very similar to the map concept that
we have discussed, is a map only unlike the Hashtable and properties that we have discussed, it
also like the discuss, it is unlike the properties of Hashtable, it is basically is an abstract class.
What is the concept? That means all the methods those are there defined in, defined actually you

can create a customize class extending Dictionary class to be in your own.

So, Java gives, it is little bit a blank cheque like, so whatever the things that you want to do, you
just simply implement Dictionary, that means the compatibility issue can be restore and it can
ensure it. So, there is no much about so far the current programming situation is concerned. The
Dictionary is really hardly used by any programmer because the Dictionary which is now, which
is earlier and the map is which is now is much more, so map gives more facilities than the

Dictionary, so people prefer maps only, the Dictionary is highly overlooked here.

(Refer Slide Time: 18:02)
D RS

<= Methods declared in Dictionary class

Method
Enum nts() Returns an enumeration of the values contained in the

dictionary.

V get (Object key) Returns the object that contains the value associated

with key. If ke is not in the dictionary, a null object is

returned.

boolean isEmpty() Returns true if the dictionary is empty, and returns false if it contains at
least one key.

Returns an of the keys contained in the dictionary.

Inserts a key and its value into the dictionary. Returns null if key is not
already in the dictionary; returns the previous value associated with key if
key is already in the dictionary.

V remove (Object key) Removes key and its value. Returns the value associated with key. If key is
not in the dictionary, a null is returned.

int size() Returns the number of entries in the dictionary.

Table 10.9: The methods declared by t class

Enumerat

V put (K key, V

But Dictionary is an interface, it gives design rule that what are the different methods that a
programmer, if you want to implement a Dictionary can utilize here. So, there are the few basic
methods | have mentioned here, elements is a method, get is a method, isEmpty, and then put
method, remove method, know the size of a Dictionary collection, size method, those are the few

methods are there in the Dictionary.

Again | want to say is that if you want to implement Dictionary, it is your responsibility to
implement all these things. Now, why you can go for implementation? This is because
implementation enables you to access all those collection in a synchronized or parallel execution
otherwise why you should go for having this one when the map, the better supports is available

to you.

(Refer Slide Time: 18:52)

7 https://cse.iitkgp.ac.in/~dsamanta/javads/index.html

7 https://docs.oracle.com/javase/tutorial

So, with these things | just want to conclude the discussion about Java collection concept and its
facilities. Definitely, learning will be complete only when we can utilize all those methods in
some program based, so programming issues will be discussed next. Now, our plan of the
discussion for the remaining course is basically to cover one by one the different data structure.
Different data structure means those are the theoretically data structures are available like array,

linked list, tree and graph, many things are there.

Then we will discuss about how all those data structures without using JCF can be implemented.
So, realization of this data structure from the core, that mean without taking the help of java dot
util. Then we shall discuss about how a particular data structures can be exercised using the Java
collection framework facilities or map framework facilities. So, this is basically the plan from the
next week onwards, and | hope you are enjoying this course and be involved. What are the link

has been given, you should go through the link, study materials and then enjoy it. Thank you.

