
Object Oriented System Development Using UML, JAVA and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Use Case Guidelines

Lecture 06

Welcome to this lecture.

 In the last lecture, we were discussing about use case modeling. We have said that use case

modeling is one of the core activities in the object-oriented design process and the use case

diagram is one of the most important diagram because all other diagrams are derived based on

this use case diagram.

(Refer Slide Time: 0:45)

So far, in the use case modeling we had discussed about the basic syntax, how the use cases are

represented, about the actors, communication relationship and so on. We also discussed about

factoring of use cases. We had discussed that under some situations it is necessary to factor the

use cases, especially when the use cases are complex and large and when there is scope of reuse

the functionality across use cases. We had discussed three mechanisms for factoring the use

cases: inheritance, include and extend relations.

We had also said that the diagram by itself conveys only limited information and therefore every

use case diagram must be accompanied by a text description. Though there is no recommended

format for text description, but we had discussed about some commonly used formats for text

description. And after that, we had looked at some problems and tried to identify the use cases

and construct the use case models. We had looked at how to read through the text description of

the problem, identify the use cases. We also identify the actors and see what use cases they

participate. In our initial model, we tried to represent those and also the event-based ones:

various events and how the use cases respond to those.

(Refer Slide Time: 3:06)

Based on the discussion so far, let’s look at some Style Notes recommended, proposed by

Ambler in 2005 in his book. The Style Notes are about developing good quality UML diagrams.

The first thing to note is that all use cases should be named with a verb form, for example,

register student, register courses, et cetera. The functionality that we document here are

essentially activities and should appear in verb form. Another good practice is that, even though

the use cases are independent and they don’t have dependency and it is not clear that which use

case should be invoked first, there is no explicit notion of timing, but then we must try to

document the use cases in the way they are typically invoked. For example, we have here (in the

above slide use case diagram) the professor first registers for the courses and finds the students

have registered, the students register for courses and they may drop courses.

In many use cases, there are more than one actor collaborating for completion of the use cases.

The primary actor who invokes the use case should appear on the left. The other collaborating

actor like just see in this example (in the above slide), the student drops courses, but during the

dropping of the course, it is checked the calendar, that whether it is within the permitted time.

Calendar here is the collaborating actor. The collaborating actors should appear on the right side

of the use case diagram as much as possible. These are not rules but just general guidelines.

An actor can be associated with one or more use cases. We don’t have to draw the actor again

and again for every use cases it invokes. We can show the each and every interaction with use

cases with communicate relations. These communicates relations are just lines, these are not

directed lines so need to use arrow direction. A scheduled event in use case diagram may be done

based on the internal clock but it is a good idea to have an actor named as calendar and this helps

in the later design. In this it may appear slightly artificial because the calendar is actually part of

the system, it is a system clock basically. But then it’s a good idea to have the calendar

mentioned here as actor instead of system clock because it helps in the later design. The actors

interact with the system, but if there is an interaction between the actors themselves, this is not a

part of the system that we are modeling. We are modeling only the computer interaction of the

actors but the actors collaborating with themselves is not represented. For example, the student

telephoned the professor which is an interaction among actors which is not represented here. So,

the direct communication between the different actors is not represented; only the interaction of

an actor with the system is represented.

We had discussed about factoring the use cases, using the include, extend and generalization.

This factorization often leads to good quality design during the design process, but then this

should be either a single level or at most two levels. Typically, it should be single level. In this

example (in the above slide), single level is shown. But in more complicated cases, maybe two

levels use but not more than that because it unnecessarily complicates the diagram and designing

becomes difficult.

(Refer Slide Time: 9:02)

There are some more guidelines, the names of the use cases should be as given by the users. The

technical names should not be used, for example, register courses is the terminology that

everybody uses and we should not give another terminology. The use cases at the top level

should be as simple as possible and then we may split these into more detail ones as the design

proceeds.

Remember the use case diagrams represent functionality and these should focus only on what is

the system is supposed to do and not how the system is supposed to do. For example, it should

focus on what are the functionality supported by the system, what it should do, not how it will:

will it access the data base, will it send a message to another process, semaphores, et cetera. So,

these how aspects are not represented in use case modelling. Only the what aspects, what

functionality to be supported is represented in use case modelling.

(Refer Slide Time: 10:38)

Now let’s observe this example of use case model (in the above slide). There are lot of actors

here and lot of use cases. Is it okay?

No, it is not okay. There are too many use cases, too many actors, we should avoid it. At the top

level, we must have a simple diagram, but how do we achieve it?

We will see that we can achieve this even for a very complicated system by packaging. So, we

should not use this kind of diagram where there are dozens of use cases, it makes it extremely

difficult to understand this and proceed with the design. When we have many use cases,

complicated use cases, we use packaging. A package is like a folder. This is the representation of

a package (in the below slide), name of the package is ‘Accounts’ and looks like a file folder. We

can see in the ‘Accounts’ package there are three use cases: Print Balance sheet, Receive grant,

and Make payments. And we might have actors interacting with this package and that’s the way

we simplify the top-level diagram using packages.

(Refer Slide Time: 11:40)

(Refer Slide Time: 12:40)

So, the diagram that we have drawn earlier was this one (right side of the above slide). We can

see, there are too many use cases. If we use packaging, it appears like this (left side of the above

slide). Each package contains a set of coherent use cases, and they confirm to the name of the

package. For example, one of the names of a package here is ‘order entry’. The use cases Look

up item availability, Create new order, Update order all these are part of this package naturally.

We can see that rather too many use cases, its more acceptable to have the use cases organized

into packages and later in other associated diagrams will elaborate the packages.

(Refer Slide Time: 13:54)

Now, let’s do some quiz. You must try to do with pen and paper before we discuss the solution.

Here the problem is about a home assignment system (in the above slide), it is used by the

instructors while taking the class. The instructor distributes home assignments and uses the home

assignment system to download the students’ solutions and look at solutions and evaluate them.

Instructors also uses the home assignment system to post the suggested solutions and also for

each submitted assignment by a student assigns a grade to the assignment. The student is another

actor, the student can download the assignments and then upload or submit the assignments

solutions on the home assignment system. The system clock triggers to automatically to remind

the students, a day before an assignment is due. It sends out a mail to all students saying that:

‘tomorrow is the last date for submitting the assignment’.

If we read through this, it is organized in a way which makes it very easy to draw the use case

model, typically it is not organized in this structured way. It’s more like an essay text description

but here it is under each actor what functionality invokes is mentioned and a straight forward

model development. So, we can have an instructor as the actor. The instructor functionality or

the use cases invoked are distribute assignments, review and distribute solutions, and assign

grades four use cases. That a naive solution, we just draw one use case for each. Another actor is

the student who can download the assignment, submit assignment solution, get solution and the

system reminds the student a day before an assignment is due.

(Refer Slide Time: 16:58)

If we represent this in the form of a use case diagram, we get a straight forward diagram like this

(in the above slide). Here, the calendar reminds the student, the instructor distributes grade, posts

solutions and distribute assignments. The student gets assignment, submit the assignment, gets

the solution and gets the grade. But this is not the best model that is possible. It should have been

improved because see here, in the distribute assignment, there are two actors participating: the

instructor distributes the assignment and the student gets the distributed assignment. Similarly,

the instructor posts the solution and the student gets the solution. These are basically the same

use case where both of them are participating. The instructor distributes the grade and the student

gets the grade.

(Refer Slide Time: 18:14)

A better way to have this use case model is something like this (in the above slide). That the

instructor distributes assignment and the student participates in getting the assignment, the

instructor posts the solution, the student participates to downloads the solution. The instructor

distributes the grade and the student gets the grade. The student submits the assignment and the

calendar reminds the student and student is a participant here because the student gets reminded.

So, this is a better diagram where less number of use cases are used.

(Refer Slide Time: 19:04)

We have so far looked at some very basic aspects of the use case model and I am sure that based

on our discussion so far, you can develop a use case model for a given small problem.

Now let’s look at the class diagram.

(Refer Slide Time: 19:31)

A class is a fundamental object-oriented concept. Whenever we discuss anything with to do with

object orientation, a class is the first thing that often comes up. A class to think of it, is a

template for object creation because once we define a class, we use it to create many objects. We

say that the class is instantiated into objects. We can use a class template to create objects.

Examples of objects are employees, books, library members, et cetera. Those who are familiar

with the programming languages like Java and C++, they know that some of the classes, they

don’t really produce objects, that are the abstract classes.

Question that naturally arises here is that if we have a class definition and we don’t use it for

object creation, what is it useful for? Let just repeat this question, if we define an abstract class,

what is the use of it because we cannot create any objects from an abstract class?

The answer to this question is that yes, we cannot instantiate an abstract class but then, it helps us

to reuse the definitions provided in abstract class because we can define concrete classes based

on the abstract class which will reuse the functionality defined once in the abstract class and we

can derive several concrete classes from abstract class. We define the functionality only once in

the abstract class and reuse this in the concrete classes.

(Refer Slide Time: 22:09)

Now, let see how we can draw a class diagram. A class as we know that these are entities or

objects with common features. For example, the books are the objects and these objects are

constituting the book class. A class is represented as a solid outline rectangle with three

compartments: the first compartment here is the name of the class and then we have the attributes

in the second compartment and the methods are in the third compartment. For example, in the

above slide, we can see that window class has three compartments. But it is not necessary to

always have the attribute and the operations segments or the compartments of the class, we can

simply write a class name with a rectangle. Like window class (yellow color) shown in above

slide without second and third compartment. So, we can also alternately represent the class, just

by writing the name of the class without giving the attributes and the operations. The attributes

and operations are optional, the name of the class is mandatory. So, as the attributes and

operations are optional, we can use these attribute and operations compartments depending on

the purpose of the diagram. It will become more clear as we proceed with our discussion that

under what situations, we need the attribute and the method segments.

(Refer Slide Time: 24:17)

In the above slide, we can see basic representation of class diagram in UML. In the rectangle, the

first segment is the name of the class and then the second and third segments respectively are the

attributes and the operations. A class can have some implicit attributes due to associations with

other classes but here we have not shown. This will be clear in our next lecture where we discuss

about the association relationship between classes. we will see there that whenever there is a

class associated to another class, it will have some attributes appearing implicitly on account of

the association relation.

(Refer Slide Time: 25:08)

Now let’s look at another example of UML class (in the above slide). The same LibraryMember

is represented just by its name (the right one in the above slide), name and the operations (the

middle one in the above slide), and the name, the attributes and the operations (the left one in the

above slide).

So, the question is, when do we use each of these? Or is it that we can use it as we like?

No, not really. The design processes are the one using which we will have a step by step method

of given a problem description. We will come up with object-oriented solution, and there in

almost every design process, we will see that at the start of the process, we identify only the

classes and we represent them by just a class name within a rectangle. Next, as we proceed in our

design process, we identify the methods, we populate the classes with the methods and therefore

towards the middle of the design process, we get class diagram with class name and methods.

And subsequently in the design process later, we get kind of representation where we have name

of the class, the attributes and the operation and it becomes feasible to implement this kind of

representation.

There are many case tools that can generate code directly based on the complete class diagram

(the diagram with all three segments). For example, these tools can create complete code from

our LibraryMember class diagram (the left one of the above slide) just by a click of a key. The

code will have the class definition, the attributes defined and the method prototypes defines.

We will stop here. We will continue from this point in the next class.

Thank You.

