
Object Oriented System Development using UML, Java and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 59

Decorator Pattern III

Welcome to this lecture.

In the last lecture, we were discussing about the decorator pattern. We had said that the

decorator pattern is a very important design pattern, if we use this in application development

it gives us a powerful mechanism to structure our application. We can add responsibilities to

individual objects as compared to adding responsibility statically through inheritance.

Responsibilities can be added at a time to an object removed more responsibilities added and

shown.

And the client classes, the client objects they don’t even distinguish a decorated object with

the concrete object. The class diagram was simple will just recapitulate this class diagram. I

will pose a quiz problem, please try to do the quiz problem and will display the solution so

that we can compare your answer. Now let’s look at the basic structure of the decorator

pattern.

(Refer Slide Time: 02:08)

In the decorator pattern (in the above slide) the client interacts with the outermost decorator

both the concrete component and the decorator they are derived from the component, the

component can be an interface or an abstract class and therefore the concrete component in

the decorator they support the same operations but a decorator can add additional operations

there can be various types of decorators. And for those operations which are defined in the

concrete component, the decorator for those operations only forwards to the concrete

component.

On the other hand, for the operations which are defined in the concrete decorator it executes

that and does not forward any calls to the concrete component and just look at here the

cardinality, the cardinality is one because at a time to a concrete component we can add one

decorator at a time. We can add many decorators but one at a time that is the implication

here.

(Refer Slide Time: 03:26)

Now, let’s try to solve a quiz problem. The quiz is that we want to write a software using

which we can make ice creams, this is a game package and in this game package we can

create ice creams and we can choose the following types of toppings in any combination in

any order, so we have a basic ice cream.

And then we can add toppings to that we can first have nutty topping, honey topping, fruity

topping and so on. We need to apply the decorator pattern to have this game package written,

we want to draw the class diagram and we want to write the Java code. Please draw the class

diagram first. The decorator has a simple structure as you have seen that the client interacts

with outermost decorator and the decorator each time contains one more decorator or the

concrete object.

(Refer Slide Time: 05:01)

So, this is the solution, the interface ice cream is implemented by the simple ice cream and

ice cream decorator. The undecorated ice cream or the simple ice cream, we have the make

ice cream method here which will draw the ice cream and then we have various types of

decorator here, these are the concrete decorators and we have the nutty decorator which will

add nuts, the honey decorator, the fruity decorator and so on.

And each decorator can contain another decorator: single decorator or the concrete object

which is the simple ice cream. So, this is the class structure for this example (in the above

slide) by applying the decorator pattern, but what about the Java code?

Please try to write the Java code for this application so that we get a feel that how do you

really could such a class structure. We need to write the code for ice cream which is the

interface, the simple ice cream.

(Refer Slide Time: 06:33)

Please see the above slide code. Interface ice cream only has a make ice cream method and

this is written here string it will just print instead of displaying a graphic it will just write in

terms of text. Simple icecream implements icecream so this is the icecream interface which is

just having the method make icecream and then the simple icecream implements the icecream

interface and here it just writes basic icecream we can have a graphic drawing of the simple

icecream.

And then the icecream decorator implements the icecream interface and then it has a

reference to the special icecream and then it takes the special icecream as the argument and

stores the reference to that because it will pass on the calls to that and then it has a method.

There is abstract class icecream decorator basically and these are the concrete classes nutty

decorator, honey decorator and so on.

Now here it defines an abstract method make ice cream and it returns special icecream that

make icecream, now this will be overridden by the concrete classes.

(Refer Slide Time: 08:49)

Now the nutty decorator extend the icecream decorator which is an abstract class and nutty

decorator is a concrete class it takes special icecream as an argument. The constructor takes

special icecream as an argument and then just call super special icecream so that the

reference gets stored and, in the make, icecream it overrides the make icecream of the

icecream decorator and then it just adds nuts and in the add nuts it just returns crunchy nuts.

And the honey decorator is a concrete decorator similar to the nutty decorator, again it

extends the abstract class icecream decorator and then there is a constructor where it stores

the reference to the argument that is passed on to it and then overrides the make icecream and

then it has only the add honey here and add honey is just return sweet honey.

So, this is a simple implementation of the example that we have discussed here the decorators

only write text but then the game package you might want to write in graphics those who are

incline programmatically have done a lot of programming using Java swing and so on please

try to write a graphics based software where using this basic skeletal code you can have the

basic icecream and various types of decorators on it as the player or the user chooses different

options.

(Refer Slide Time: 11:00)

Now we have some experience on applying decorator pattern, we have seen that it is more

flexible than static inheritance, responsibilities can be added and removed at runtime we can

add a property twice, for example we can add double border to a text view but then in

inheritance you cannot do that actually because you cannot inherit from class twice that will

be an error. Adding two borders will be difficult using static inheritance it will give you an

error.

And also, the decorator you only add that is needed and again you can remove those

responsibilities which are no more needed but using inheritance makes the classes feature

laden lot of features methods get define and many of that you never used also and also you

can use new kinds of decorators independent from the class of objects they extend.

(Refer Slide Time: 12:28)

But are there any disadvantages with decorators? Yes, we had said that regular use can make

the code very difficult to understand and debug. For example, you might have a lot of little

object 60, 70 or 100 decorators added to a basic class and these are added in runtime trying to

analyse the runtime addition of the objects as decorators make it very frustrating to debug the

code. As long as you add only few decorators these are well within the grasping power of a

programmer but if you add too many decorators, dozen sub-decorators to a basic object these

appear like little objects getting connected during runtime makes it very difficult to follow the

behaviour. Ofcourse, the programmer who has written the code may be easy for him because

he has added those lot of decorators. And he knows what he has been doing but somebody

else trying to find out what’s going on the code maybe very frustrating and hard to learn and

debug by anybody other than the programmer who had written the code. So, a word of

caution here if you are using decorators don’t add too many decorators run time.

(Refer Slide Time: 14:13)

We have been discussing the advantage of composition over inheritance in many applications

both are mechanisms to reuse functionality. In inheritance we use the functionality of the

parent class and these are statically bound and weakens encapsulation. Whereas composition,

we again reuse functionality of objects at runtime this is basically the reuse occurs through

delegation invoked through an interface these are dynamic responsibilities get added

dynamically. And this is an example of a black box reuse (in the above slide) just need to call

the method of the internal object whereas if we use inheritance maybe you can modify the

behaviour of a method.

(Refer Slide Time: 15:22)

So that’s a white box reuse using inheritance. Inheritance is a quick way to design new

components just use extends and then it is done but many programmers make the mistake up

using too many inheritance and result in bloated hierarchy code becomes difficult to maintain

and unnecessary baggage many of the it has large number of methods and as far as specific

application the programmer does not even need half of the methods just uses only few of

them, the rest are only unnecessary baggage just cluttering.

On the other hand, composition, the drawback is that if we have too many decorators it

becomes difficult to understand the behaviour because the semantics of interaction are

decided at runtime.

(Refer Slide Time: 16:27)

We have discussed already an important pattern: the decorator pattern, we will look at

another pattern which is also a very important pattern, the iterator pattern. The iterator pattern

any Java programmer would have already been using the Java iterators but ofcourse, many

Java programmers they don’t know why they have been doing it that way just because it is

there in the book they have been doing, they have not asked the question that why iterators,

how does it work? and so on.

If we know the iterator design pattern will know why you have been using the Java iterators

for the collection classes? What is the advantage for another class which is not part of the

collection class or you have extended from the collection class how do you define an iterator

for that? And so on.

If you know the iterator pattern not only that you will understand how the Java iterators work

why you have been doing something in some particular way what is the advantage? What is

the exact mechanism that was used? But also you can use the iterators for a new application.

So, it’s an important pattern.

(Refer Slide Time: 18:02)

Traversing of the elements in an aggregation is a very common problem in programming. We

do traverse through an aggregation for various purposes, we might like to search something,

sort, display all the contents and so on. Every Java programmer knows that the iterators

provide a uniform way of doing this.

When using an iterator, we don’t need to know how is the collection implemented? How is a

tree implemented? Is the tree is implemented an array list? Is it implemented on linked list?

And so, we do not bother we just use the iterator.

Also, for the same aggregate different client classes may be traversing it concurrently and

synchronisation is supported by the iterator class and even the other methods may be

accessing the iterator still will be independent even though different iterations on the same

aggregate be occurring but then these don’t impact each other.

(Refer Slide Time: 19:49)

The intent of the iterator pattern is to provide a way to access the elements of an aggregate

object sequentially and at the same time, the programmer need not understand the complexity

of the underlying representation. The programmer just calls the methods or the iterator next

and so on. The programmer did not look at how is the aggregate represented internally and

then find out how to identify the next element? How to identify end of the tree? or whatever

and the leaf nodes and so on.

And therefore, it tremendously reduces the programming effort and makes the code writing

easy and understanding the code easy. Instead of having the aggregate object define the way

it will be traversed it is moved to the responsibility of traversing to another class which is the

iterator class.

Otherwise, if different types of iterator are supported in the same aggregate class, for example

we want to traverse pre-order, post-order, in-order, level order and so on the aggregate object

may become too complex. So here the responsibility of traversal is shifted to the iterator

rather than to the aggregate object.

(Refer Slide Time: 21:42)

Here, we access the aggregates content sequentially that is independent of the implementation

of the aggregate, whether it is implemented in array list, linked list, hash table we don’t

bother and also whatever be the aggregate whether it is array list, linked list, hash table

whatever all the iterators have the same interface and therefore it becomes easy for the

programmer.

And also, we can use different types of iterators to support different types of traversals on the

same aggregate and also, we can have multiple iterators and each of these multiple iterators

they don’t interfere with the functioning of other. Maybe one iterator is traversing from the

front to the end, first element to the last element and another iterator may be travelling from

the last element to the first element. And then we have created these two iterators they won’t

even interfere with each other.

(Refer Slide Time: 23:17)

The main idea access elements of an aggregation in some sequential order that is independent

of the specific collection. We might define what is level order and given any tree we can just

have a iterator which does the level order traversal, in-order, post-order, pre-order traversal

and so on.

(Refer Slide Time: 23:55)

Now the context of this pattern is that often we need different types of traversal on the same

aggregate. We might need multiple iterators by the same client or maybe by different clients

and also all types of traversal cannot be anticipated priori. We can define the iterators for any

specific type of traversal that we need and we don’t want to change the aggregate class

neither we want the aggregate to have a very bloated interface supporting all possible types of

traversals that somebody may need.

(Refer Slide Time: 24:51)

In the iterator pattern the basic methods that are supported by the iterator are reset, next, get

and hasNext. The reset intuitively clear, move to the beginning of the range of elements, next

advance to the next element, get return the current value that is referred to, hasNext

interrogate to check if there are more elements in the range or we have reached the end of the

range.

(Refer Slide Time: 25:37)

We can have some additional methods for the iterator popular methods are removed, the

current element may be removed as in the Java list but it may not be necessary for all types of

aggregates. Add an element at the current position, count, return the number of elements in

the aggregate and first which is basically reset.

We will discuss about the class structure of the iterator, we will see how the iterator object is

created and how the reference of the aggregate remembered by the iterator, how does the

iterator perform the traversal and how does it implement all these different methods. And that

will help us to understand the way the java iterators for the collection classes work.

And also, will try to write iterator for a given class which we have derived from the collection

classes for which iterators have not been defined.

We are almost at the end of this lecture and those activities that is the class structure of the

iterator, the code for the iterator and writing the iterator for a given application that will take

up in the next class.

Thank you.

