
Object Oriented System Development using UML, Java and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 58

Decorator Pattern II

Welcome to this lecture.

In the last lecture we had started to discuss about the decorator pattern. We had said that the

decorator pattern is a very powerful pattern. If we use it, we can add responsibilities to

individual objects dynamically which is in contrast to static addition of methods or

responsibilities to classes through inheritance. We had discussed about the basic structure of

the decorator pattern and the class structure with the help of an example.

(Refer Slide Time: 01:07)

Now, let’s recollect the class structure that we had discussed. If you remember the client

interacts with the outermost decorator both the concrete component and the decorator they

inherit from an abstract component or the implement an interface or they derived from the

same abstract class component. And therefore, they have the same methods, for example

operation is inherited by both the concrete component and the decorator.

The client cannot distinguish whether it is dealing with a concrete component or the decorator

and therefore the decorators once added seamlessly sit on the concrete component and the

client does not even know that it is dealing with something different. There can be different

types of decorators but again they are derived from the same decorator class and therefore

they have the same methods, of course they can add additional methods as well.

For the methods that are defined in the concrete component the decorator just forwards it to

the concrete component and just see here that this is aggregation and there is one the

cardinality is one (in the above slide), that means for a given component, we can add only

one decorator at a time and each decorator adds additional functionality and the client

interacts with the outermost decorator.

The class diagram is simple, we can understand it easily but it is a very powerful mechanism,

let’s try to look at some examples and see the advantage of the decorator pattern if we know

this pattern well, we will have enough opportunity to apply this and make our application

elegant and sophisticated.

(Refer Slide Time: 04:03)

The decorator as we have been discussing we can add responsibilities at runtime that is

dynamically we can add responsibilities and even we can remove responsibilities. Even

though in the examples that we have discussed we have only added responsibilities but then it

is also possible to remove the responsibility by just destroying one of the decorators.

Compared to adding responsibility through inheritance use of decorator avoid subclass

explosion, we had seen through an example that if we can add responsibility to entire classes

and for some specific applications, we might have hundreds of sub-classes it becomes

extremely confusing for maintenance for development the programmer would have to look

up.

And not only that these are permanently bound the responsibilities and therefore there will be

several responsibilities of a class which the programmer does not need but still those methods

will be there just complicating the program. We can recursively nest multiple responsibilities

as far as the implementation is concerned the decorator has the same interface as the concrete

component. And each decorator should add only one or two small methods it should not be a

heavy weight class; the decorator should not have drastically different and large

responsibilities; if that is the case we need very different algorithms, very different

responsibilities then the strategy pattern would be more meaningful rather than using the

decorator.

(Refer Slide Time: 06:41)

Let’s look at some examples of uses of the decorator pattern. One of the areas we had

remarked where decorator pattern is used profusely is in GUI development, graphical user

interface development and also in the development of input output streams.

Let us first look at the GUI part. Typical GUI components don’t have scroll bars, now in

some situations we need scroll bars, for example we have lot of text and all are not visible we

would like to have scroll bar so that the user can scroll up and down and look at the text. Java

JScrollPane, or the widget is a container with scroll bars. And if we add any component to the

JScrollPane, then that becomes scrollable and we will see that this is a direct application of

the decorator pattern.

Now let’s look at this example any GUI component like the JScrollPane can decorate it, let

say we create a text area with 20 rows and 30 columns, so we create new JTextArea(20, 30)

and area is the reference to that and then we create a scroll pane and we give area is the

argument to it.

So, this is the constructor for the JScrollPane and it takes areas the argument and as a result

the scroll pane will contain the area that is the text area which was created twenty columns

and rows; 30 rows to which a scroll pane will get attached and then we can attach this to the

content pane by the same mechanism.

So just see here (in the above slide) that there are two decorators which got added here, there

is the scrollable client and text. There entire thing is the text but then our window cannot

display everything this is the viewport only small part of the text is visible, now for the client

to look at different parts of the text we need to give the scroll panes and that’s what scroll

pane do. The vertical and the horizontal scroll panes get attached here and now we can scroll

and look at different parts of the text.

(Refer Slide Time: 10:30)

Another decorator is the java border. The scroll pane is a decorator and in GUI another

popular decorator is a java border. Any JComponent we can attach border to that or decorate

with border if we tell in more technical terms you can say that a component can be decorated

with a border and we are implying that we are using the decorator pattern.

The borders themselves are not components but then they know how to draw the edges of the

java swing components. The borders not only draw a line and fancy edges around the java

swing component but also the borders provide title to a component and also some empty

space around the component and also some basic behaviour.

The basic behaviour can be to minimize to maximize to fill the entire screen make it into an

icon by minimizing to delete by pressing a cross and so on these are some of the basic

behaviour that the border can give to a component.

(Refer Slide Time: 12:10)

Now let’s look at how to attach a border and a scroll bar (in the above slide). We want to

attach two decorators. This is the original text, and then we want to attach a scroll bar and we

want to attach a border (in the above slide). So, there will be two decorators we want to first

decorate the original text with a scroll bar and then we will attach or decorate with the border.

So finally, it would appear like this there is a scroll pane and then there is a border.

(Refer Slide Time: 13:02)

If we see in terms of the class relations the border is associated with the scroll bar and the

scroll bar is associated with the text or let say in the terms of object relations, we have the

border which has a link to the scroll bar and the scroll bar has a link to the text and the

terminology that we use the original text we call this as the decorated and the scroll bar and

the border are the decorators and the client always interacts with the outermost decorator (in

the above slide).

(Refer Slide Time: 14:00)

Now, let see the java code (in the above slide) we create a TextView and then we attach a

scroll decorator that is a scroll bar to the text view and then we attach the border. So, we have

created the TextView and given that as argument to the scroll decorator and then the entire

thing is an argument to the border decorator.

You might have done such programming in java swing and if you know the decorator pattern

then you will understand why you are doing like this and also the names given in the java

swing components ‘border decorator’, ‘scroll decorator’ which hints that these are the direct

use of the decorator pattern in the java swing-based user interface development.

And then if we say aWidget.draw() -- the draw method of the outermost component that is

border decorator will be invoked and that in turn will pass the request to the scroll decorator

and the scroll decorator will pass that into the text view decorator and those aspects which

they can handle themselves they will not pass it. For example, scroll related aWidget.scroll()

or something like that, that will be handled by the scroll decorator not be forwarded to text

view but otherwise the border decorator will forward the request to the scroll decorator which

will in turn forward the request to the text view.

Now let’s look at an example of the java I/O stream. You might have done some

programming using java I/O, the java input output and if you look at this code now, it will

appear familiar and then you will realize that the code that you have been writing are actually

the decorator pattern that has been used in the java I/O stream.

Just look at here we have created a file stream (in the above slide) a basic raw file stream here

by giving the name of the file (new fileStream(“filename.dat”)) and then the ASCII 7 stream

(new ASCII7Stream()) interprets the raw file stream bytes as ASCII characters and then the

compressing stream is a decorator which compresses it. So, if you put string hello world it

will be converted to a file stream but first it will be compressed the ASCII 7 stream and then

the file written to the file.

Above one is a clear example of a decorator pattern and after having done this how will class

diagram look like? If we have defined the classes ASCII stream, compressing stream and the

file stream how are these classes interconnected or structured if we know the decorator

pattern, can we draw the class diagram? please try to draw the class diagram and we will just

display that in the next slide.

(Refer Slide Time: 19:07)

Here text view is the basic component on which we can add various types of decorators both

the text view and the decorator are derived from the visual component and there are various

types of decorator one is the scroll decorator and the other is the border decorator.

The scroll decorator and border decorator also have the same interface as the visual

component draw but they add additional capabilities. For example, scroll to add draw border.

For those methods which they can complete the processing requirement, they just do it do not

pass it to the internal object they are holding internally but for other ones like draw() they

would pass it to the object that is inside.

So, you can have a text view to which you can either add a scroll bar and then a border or we

can add a border and in a scroll bar and so on that will be decided in the run time and also, we

can add the border decorator twice. For example, on the text view we can add the border and

then we can add the scroll bar and finally we can add another border these are all possible.

(Refer Slide Time: 20:56)

So far in our discussion on the decorator pattern we have said that the decorator pattern gives

a convenient option to add responsibilities to object which is advantageous in many situations

in contrast to adding capabilities to an entire class through inheritance. Many times, the

programmers get prompted or attracted to use inheritance because inheritance is simple to use

appealing and for everything, they use inheritance.

But then if we use inheritance to add responsibilities that would lead to an explosion of

classes, for example in this border example we want to the basic text view and then we derive

a class text view with border and then text view with border and scroll bar text view with just

scroll bar and so on then we need many more classes just to draw that.

Let say we have text view class and we need another component if we are using inheritance

then we will have text view with border. Now let us say we want text view with border and

scroll bar and we want only text view with scroll bar and we want text view with scroll bar

and then border and so on. Text view with a two borders and so on there will be lot of classes

and if we use the decorator pattern we can add responsibilities to objects whenever necessary

and also if we have another basic component like streamed video view in addition to text

view, we also want to decorate a streamed video view, then that would be twice the number

of classes here: we will have the streamed video view and then all these classes will be there.

But then if we use a decorator pattern then we just need one extra class here. If we add a new

basic object and we use a decorator pattern then there is just incremental increase of only one

class. Please try to draw the diagram where there we have two basic components the text

view and the streamed video view and then we can add the border or a scroll bar to either of

this. Please try to draw this and we will show the solution below.

So, we have the text view and we can have one more basic class the streamed video view. So

just add one more class here basic class and these are the decorators can be applied to the

screen video view as well (shown in the above slide).

(Refer Slide Time: 25:42)

But as do the decorators have some disadvantages? if we use the decorators recklessly, we

had too many decorators then the code becomes difficult to understand. Like java I/O streams

we can add many decorators if we look at the java book and we will find out there in the java

I/O streams 60 odd decorators.

Now just imagine that we add these 60 odd decorators to a basic stream in various ways, then

the person trying to understand the code would be very hard pressed because these are

attached dynamically. You cannot just look at the code and then decide because you can even

attach this dynamically.

So, we need to look at the runtime behaviour which becomes very difficult, the solutions

become complex and if we have too many decorators we might use a factory class which will

help us to create several decorators which will be manageable. We use a factory class to add

lot of decorators but as long as we add only a handful of decorators like three, four, five and

so on we don’t need factory class.

Use of the decorator pattern provides a sophistication flexibility and our application can

become elegant.

We are almost at the end of this lecture we will stop here and continue from this point in the

next lecture.

Thank you.

