Object Oriented System Development using UML, Java and Patterns
Professor Rajib Mall
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 57
Decorator Pattern |

(Refer Slide Time: 00:31)

PPV ANl LN

 Decorator Pattern |

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES il

Welcome to this lecture.

In the last lecture, we looked at the proxy pattern, very useful pattern, it has large number of
applications and now we will look at the Decorator Pattern. This is also a very important
pattern, very powerful pattern. Many of the problems, if we can solve using the decorator
pattern, then the solution becomes really elegant. Without the decorator pattern, it would be

very inefficient and bad solution. Let’s look at the decorator pattern.

(Refer Slide Time: 01:02)

‘PR QHILe B

Decorator Pattern: Introduction
* |ntent:

— Attach additional responsibilities to objects dynamically.

— Provides a flexible alternative to subclassing. '

* A wrapper pattern!
Motivation:
Add responsibilities to individual objects as and when

required and not to an entire class R
— Should conform to the interface of the object. %’

NPTEL ONLINE "y
[IT KHARAGPUR CERTIFICATION COURSES Y
E J‘ 1

The idea here is that we have many objects that have got created here. Now, during the

runtime, if necessary, we want to add additional responsibilities to these objects. But how is
that possible, because the responsibilities are basically methods and the class has only fixed
number of methods. So, once you create the object, the methods are fixed, how do we attach
additional methods to an object dynamically? So far, we have only been familiar with
attaching methods by sub classing. But then, using sub classing, if we attach additional
methods to a class, then they are bound to it permanently. But here, our intention is that we
want to attach some methods to some of the objects and to other objects we want to attach

other responsibilities.

Clearly, this is a wrapper pattern. We want to add responsibility to objects, specific objects
that we want. We do not want to add responsibility to all the objects of a class that we know
that by sub-classing, we attach additional responsibilities to all the objects of the subclass and

here, once we attach the responsibility, it confirms to the same interface as the object.

Let say we want to attach some responsibility to the first object shown in the red that is
additional responsibility (in the below slide). We want to attach a different responsibility to
this object shown in yellow, another responsibility to this object which is shown in green (in
the below slide). We might also like to add the green responsibility to this object after some

time and so on. A very powerful concept let see how it is done.

(Refer Slide Time: 03:36)

‘PP QHlILO BN

Decorator: In Simple Words
* You have an object:

— You wrap it with another object. @
— They both support the same interface.

— Later possibly wrap it with more objects..

— The ones on outside are "decorators"

* A Client uses the outermost decorator.

inside it, either as it is or with some enhancement.

!
/- NPTELONLINE A
IIT KHARAGPUR CERTIFICATION COURSES v
!

The decorator in simple words is that you have an object and then you have another object,

— A decorator passes on a method call to the object i“’\

which wraps around this object. That means the wrapped object is the one which now
becomes accessible to the user, the user cannot access this object anymore. Because another
object will wrap around this and therefore it interacts with the one that is on the outside and

that may pass on some method call to the object that is inside.

Obviously, the method that wraps around on the object will have the same interface as the
object itself. So, this screen one has wrapped around the object. The clients can no more
access the object, they have to use the green object because that is wrapping around the

subject.

But then the client does not know really that the object has changed because they have the
same interface. It invokes the same methods on the green and some of the new methods it
answers by itself, it responds by itself. For the other old methods, the object it passes on to
the object and therefore, the client of this class sees that some new capabilities of the object

have materialized.

We can even have more objects wrapping around this object, red object has wrapped around
here, the green is no more accessible directly, have to access the outermost object, the red.
Thew red one whatever new methods it has it will answer or respond for those methods. For
the other ones, it will delegate it to the green, the green in turn will answer some of that
which has implemented and the rest it will pass it on to the yellow object.

The ones on the outside, this is the actual object and the green and red are the decorators. The
client interacts with the outermost decorator and the outermost decorator first tries to handle
those methods which it can and those methods which it does not implement, it passes on to

the green and the green if it implements those methods, it will answer otherwise it will pass
on to the real object.

(Refer Slide Time: 06:38)

You were working with a
directory listing window...
then you decided to resize
it...

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

S R A S

s g A scroll bar has
.. [FEappeared!l

sl N L Y
) ;
Al A

How can a window

| \change?

S

5 R el I e

PR o

=l

At e e

I R - R B B B |

Y [PRSI T—

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

Let’s look at one example. Let say you had an opened an window on your desktop, this is a
window and then you wanted to resize. You are working on this window; you are seeing the
listing and so on. Now, you want to resize it, you pulled the corner here down. But then by
pulling the corner it has not only become smaller, but just see that there is a scroll bar which
has got accessed because now all the files are not visible and therefore mysteriously a scroll

capability has come to the same window. How is it that the basic window that existed now it
has additional capability of scrolling, the full window if you see it did not have the scrolling

capability, this is the full window (in the above slide).

All the files were visible and it did not have a scroll bar. But as you resized it, the files not
visible and therefore a scroll bar has appeared. How come the same window object during
runtime has acquired additional capability of scrolling. This is the use of the decorator
pattern, we will see exactly what happens, how it gets the additional responsibility using the

decorator pattern.

(Refer Slide Time: 08:38)

‘PP L QHLLtO B

Non-software example
* Suppose you buy a gift:

— First you select the gift...

Q) Y, ; .“' . |
— Next you ask to wrap the gift r’ N '
appropriately... b

* Agift can be wrapped in several

.
ways e @
NPTEL ONLINE A
IIT KHARAGPUR CERTIFICATION COURSES Y

Before we look at the nitty gritty of the decorator pattern, to better understand the pattern we

will see an real life example. That is the motivation for the pattern, how it simplifies and
helps and how without this pattern, the application will become very complicated. Let’s look

at a non-software example which is easy to understand.

Let us say you went to buy a gift. You went to the gift shop and selected the gift and then you
asked the shopkeeper to wrap the gift appropriately. But then you heard several options. It
can be wrapped up in several ways maybe just a paper, maybe a paper with a tape, maybe

with a bow and so on.

(Refer Slide Time: 09:52)

PPRPQEL SO EBY

They could provide various options for wrapping gift:

* box wrapped with gift-paper

* box wrapped with gift-paper-with-crepe-paper

* box wrapped with gift-paper-with-bow-without-crepe-paper

* box wrapped with gift-paper-with-bow and crepe-paper

. bm:j wrapped with gift-paper with bow and crepe-paper and
car

* box wrapped with gift-paper with bow and crepe-paper
without card

* box wrapped with gift-paper without bow with crepe-paper
and card

* box wrapped with gift-paper without bow with crepe-paper
without card
Etc...

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

pPRPQELI SO TY

Giftwrap
Possibilities

They could provide various options for wrapping gift:
* box wrapped with gift-paper Gift Paper
* box wrapped with gift-paper-with-
* box wrapped with gift-paper-withAfow-withqut-crepapaper
* box wrapped with gift-» aw gneedana

Giftwrap
Possibilities

* box wrapped with gi pape
card

* box wrapped with giftgaper wi crepexpaper
without card Card Card | 0100

* box wrapped wittrgrg=papel witmout voy witl =paper
and card

* box wrapped wi paper without bow with crepe-paper
without card VY w0 ? @

Etc...

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

L 4908 smognac o

So, the different options, the gift wrap options that we will look at, maybe the gift boxes
wrapped with only the gift paper. Maybe it is wrapped with the gift paper and crepe paper.
Maybe it is wrapped with gift paper with bow but without crepe paper. Maybe it is wrapped
with gift paper with bow and then the crepe paper. Maybe it is without card. Maybe it is with

card and so on.

If we had all these as separate items in the shop that the shop you have these cupboards and
in one cupboard, we have only gift paper. Another one where gift paper with crepe paper,
another one cupboard with gift paper with crepe paper and bow, another one with gift paper,

crepe paper and bow and card. Another one is only gift paper, crepe paper and card and so

on.

o @

You will see that the shop keeper will have to maintain at least two dozens of cupboard, no
shopkeeper does that actually. It has one cupboard where it has the gift paper another one
where it has the bow another one where it has a crepe paper, you can choose any one of them
and then use it.

They are not statically fixed. You have not really attached statically the boat to the gift paper
and then the card and so on that would have made the life of the shopkeeper and customers
very difficult but we had the simple solution in the shop. If we did not have that simple
solution, you would have different classes here, let say a gift paper with crepe paper bow and
card this is one class and these are statically attached, but we did not do this actually, this is

inheritance.

So basically, there will be many classes here and these are basically the cupboards and the
shop. If you look at this cupboard, this has card, bow crepe paper and gift paper. So, this one
is a gift paper with crepe paper and card. This is gift wrapper with bow and card. This is just

gift paper and card and so on (in the above slide).

This is tactically attaching the different capabilities, the class hierarchy can become
extremely large, if it was used in a shop, the number of cupboards will be extremely large, the

customer will get confused, the shopkeeper will get confused.

The shopkeeper on the other hand keeps the gift paper, crepe paper bow and card in different
cupboards. Only 4 cupboards and then as the customer says that what combination he needs
and the order in which these need to be packed. He just selects them and puts them at
runtime. It does not statically create these and then maintain it in the cupboard. The idea

behind the decorator pattern is something very similar.

(Refer Slide Time: 14:37)

‘PP QAEI PO,

* In order to circumvent the problem, Solution
manufacturers sell the following materials:

~Boxes You can select the ones you

—Gift Paper | need and the order you want...

—Cards

—Bows

—Crepe-paper %
NPTEL ONLINE Ny ‘
IIT KHARAGPUR CERTIFICATION COURSES Y

The shopkeeper just maintains the following cupboards: the boxes, the gift paper, card, bow

and crepe paper as the customer chooses the ones that he needs and the order in which these
are needed. The shopkeeper picks one from these and then puts them in proper order in

runtime, they are not statically attached. Selects the ones that needed and the order in which it

is needed.

(Refer Slide Time: 15:11)

pPRPQHI SO U

Decorator Pattern: Some Examples...

* Add borders or scrollbars to a GUI component
* Add headers and footers to an advertisement

* Add functionality to an input/output stream :

— Such as reading inputs line by line or compressing
a file before sending it over.

NPTEL ONLINE A
CERTIFICATION COURSES v

The decorator pattern is very similar. Let us look at some examples. We had just seen that

IIT KHARAGPUR

adding borders and scroll bars to GUI components, adding headers and footers to an
advertisement. The advertisement object exists and then you might add in any number of

headers to that in the runtime, any number of footers in the runtime.

It is not that there are different classes. One is advertisement with one header one footer,
advertisement only header, advertisement without header without footer, advertisement with
no header but two footers and so on. Here we can dynamically add as many headers and
footers needed to an advertisement. Add functionality to an input output stream, the Java 1/O

we have been using.

The Java I/O profusely makes use of the decorator pattern. Here, you can add capability to
the basic stream class. For example, compressing, we will just look at it that one of the largest
uses of the decorator pattern. Decorator pattern is in the Java I/O. If we want to understand

the Java 1/0, we must understand the decorator pattern then only it will make sense to us.

(Refer Slide Time: 16:47)

“HPR QI SO ED

Decorator: General Concepts
* A Decorator adds responsibilities to individual

objects (not to all objects of a class!) dynamically:

— In situations where a large number of independent
extensions required...

— An explosion of subclasses would occur if every
combination to be supported.

— Difficult to understand, remember and apply...

NPTEL ONLINE A
CERTIFICATION COURSES -

Now let’s look at some general concepts. The decorator adds responsibility to objects. It is

IIT KHARAGPUR

not sub classing; the sub classing will add responsibility to all objects of the class. But here
we add responsibility to an object in runtime, dynamically as and when it is required. The
decorator pattern is indispensable, when we need different capabilities to be added to

different objects at runtime.

As we had already seen that if we really wanted to do this without the decorator pattern and
by using sub classing, there will be explosion of subclasses easily. We will have thousands of
sub-classes to deal with extremely confusing, difficult to remember and apply and this is a
right candidate to use the decorator pattern will really simplify the application and make it

elegant.

(Refer Slide Time: 18:05)

‘PP AHI 2O BN

Decorator: Review of the main Ideas

* A Decorator is an object that has an interface m
identical to an object that it contains.

— Used for adding additional functionality to a particular
object at run time as opposed to a class of objects.

— Any call that a decorator gets, it relays to the object
that it contains, and adds its own functionality along

the way, either before or after the call. . @
NPTEL ONLINE o\ £ ‘
IIT KHARAGPUR CERTIFICATION COURSES Y

Now let’s review the main idea. A decorator is an object that has the same interface as the

object it contents. A decorator adds some functionality to an existing object or an object with
some decorators we will have an outermost decorator added which will have some extra

capability and to that outermost, we can add another outermost decorator and so on.

We have already seen that we can keep on adding decorators and the client will interact with
the outermost decorator which will try to handle the method invocations by itself if possible,
otherwise it will pass on to the next decorator. As a decorator, the outermost decorator gets
the call, it relays to the object that it contents and adds it to its own functionality either before

or after the call.

(Refer Slide Time: 19:20)

+ The Decorator pattern gives the designer flexibility: | Decorator:
— Can change decorator at runtime, as opposed to a static change Some
’ Comments

determined at compile time by subclassing.
* Since a Decorator has the same interface as the object it
contains:

— The Decorator is indistinguishable from the object that it contains and
from any other concrete instances, including other decorated objects.

* This is a powerful technique and used to great advantage:

— Designers can recursively nest decorators without any other objects R
being able to tell the difference, allowing significant customization. %

NPTEL ONLINE S A
IIT KHARAGPUR CERTIFICATION COURSES ¥

The decorator pattern, if we are aware, we get tremendous flexibility while designing an

application. We can change the decorator at runtime: we can remove a decorator, add
decorators, maybe add the same decorator twice, if necessary. We can add a different
decorator, more decorators, remove some of the decorators as the run of the software

proceeds.

The decorator gets added runtime as opposed to the static attachment of responsibilities that
occurs by sub-classing. The decorator has the same interface as the object it contains. So, the
client objects they do not even know that a decorator has come and taken place of the real
object, just like we saw the window, mysteriously, additional capabilities appeared for the
same object.

But it is not the same object, there is a decorator which has come and set on the real object.
The decorator is indistinguishable from the real object which contains the concrete instances
including the decorated objects which is a very powerful technique and can be used to great
advantage. Designers can recursively nest decorators without any other object being aware of

this or being able to tell the difference and allows significant customization

(Refer Slide Time: 21:19)

‘PP AHI O BN
= = component Decorator
operation() Structure

1

Concrete decoram‘

component operation()
operation()

—

Concrete Concrete
decoratorA decoratorB
operation() operation()

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, let’s look at the class diagram. Component is an interface, the concrete component is
the one which existed, the decorator also implements the component interface. Component
can be abstract class or interface and there can be different types of decorators: concrete
decorator A, Concrete decorator B, and so on and see here, that at any time, one decorator

gets added.

On the decorated object, we can have other decorators get added one time at one. Requesting
you to just compare this class diagram with the composite pattern class diagram. They appear
very similar, if you look at them, but then there is one small difference. Functionally they are
very different, their application is very different. I am just asking you to check the structural
class diagram of the decorator pattern solution and the composite pattern solution and just try

to identify that one difference between this diagram and the composite pattern diagram.

(Refer Slide Time: 23:10)

‘PP AHI O BN

An Example
Application

Consider a TextView GUI component:

— You want to add different kinds of borders and/or
scrollbars to it.

* You can add 3 types of borders:
— Plain, 3D, or Fancy
* and, 1, or 2 two scrollbars
— Horizontal or Vertical
* Aninheritance solution would require 15 classes. %

“ ' NPTELONLINE WA
IIT KHARAGPUR CERTIFICATION COURSES Y

Now let’s look at an example application. Suppose you have a GUI component which has a

TextView. It contains text and then you want to add different kinds of borders and scroll bars
to it. Let say you can choose between three types of borders: plain, 3D and fancy and
scrollbars, either one scroll bar or two scroll bar, the horizontal and vertical scrollbar and if
you look at all possible combinations and provide this to solve this problem by using real
classes that is a plain border, plain border with horizontal, plain border with both horizontal
and vertical, plane border with only vertical, 3D border with horizontal, 3D border with
vertical and so on. You will see that you require at least 15 classes. But when you can add the
borders multiple times, let say two plain borders or a plain border and a 3D border and so on
the number sub-classes that you will have to create is becomes very large. Nobody would like
to do that and the application will become very difficult to manage, maintain, and understand.
We will have to use the decorator pattern. But how do we use the decorator pattern? What

will be the class diagram? Let’s look at the solution.

(Refer Slide Time: 25:16)

1.TextView_Plain

2.TextView_Fancy Rather
3.TextView_3D Large Number
4.TextView_Horizontal of classes!

5.TextView_Vertical
6.TextView_Horizontal_Vertical
7.TextView_Plain_Horizontal
8.TextView_Plain_Vertical
9.TextView_Plain_Horizontal_Vertical
10.TextView_3D_Horizontal
11.TextView_3D_Vertical
12.TextView_3D_Horizontal_Vertical

13.TextView_Fancy_Horizontal e
14.TextView_Fancy_Vertical %

15.TextView_Fancy_Horizontal_Vertical 4

These are the 15 classes sub classes that you might have to use for above example. If you

NPTEL ONLINE

A A
IIT KHARAGPUR CERTIFICATION COURSES Y

wanted to statically attach these responsibilities the TextView with just a plain border,
TextView with a fancy border, TextView with a 3D border, TextView with only horizontal
scroll bar, vertical scroll bar, TextView with horizontal and vertical scroll, TextView with a
plain border with horizontal scroll bar and so on then required 15 classes. But if you wanted
to allow repetition of some of the borders, maybe a plane with a 3D and also scroll bar and so
on, the number will be much large and writing an application with that many classes to
choose from the programmers’ life will be really difficult. But what you can do is use the
decorator pattern. As we have already seen that the decorator forwards request to the

component and performs additional responsibility.

(Refer Slide Time: 26:43)

Decorator
contains a
visual
[1 component
TextView SteamedVideoView Decorator 1
draw() draw() draw()
resize() resize() resize()
An imagined ﬁlA—,
example Border ‘ScrollBar
draw() draw()
resize() resize()

So, the solution will look something like this (in the above slide) that we have visual
component and then we have decorator border scroll bar, plain, 3D, fancy, horizontal, vertical
and here TextView and we also have a streamed video view. The other problem we didn’t
have. If we had a stream video view in the other problem, then the count 15 will have to be

increased tremendously.

So, here both TextView, streamed video we can add all this border and scroll bar anything of
them dynamically. It is very powerful pattern. We will look at more examples. So, that we

become real familiar in applying this pattern to real problems.

We are almost at the end of this lecture. We will stop here and continue in the next lecture,
where we will discuss about the decorator pattern with more examples and also the Java code.

Thank you.

