Object - Oriented System Development Using UML, JAVA and Patterns
Professor Rajib Mall
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 50
Composite Pattern - 11
Welcome to this lecture! In the last lecture we were discussing about the Composite Pattern, very

important pattern. If you know the pattern you can effortlessly come up with a good solution to
the problem and if you are not aware of this pattern you would struggle, make many iterations
and with lot of prompting maybe you can come to the right solution and therefore it is good to
know this pattern.

(Refer Slide Time: 1:14)

PP QRIS

* Use the Composite pattern when: Applicability
— You need to represent part-whole hierarchies of objects :L:

cileef (bilesf |RiGwp| |cileef

%
- You want clients to ignore the differences between parts
and wholes

— The parts should be created dynamically - at run time:

* Example: to build a complex system from primitive components
and previously defined subsystems.

* This is especially important when the construction process will
reuse subsystems defined earlier.

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES 59

At the end of the last lecture we were discussing about the applicability of this pattern and we
commented that this pattern is applicable when there is a path whole hierarchy of objects. This is
the first requirement that there appears to be a tree like hierarchy. But then that is not sufficient

or enough to use the pattern just because there is a tree hierarchy.

The other requirement is that the parts are created dynamically and formed in two groups. That
is, we can form groups from primitive elements and then form larger groups from primitive
elements and existing groups and still larger groups and so on. Otherwise if the second condition
is not there that we form larger groups at runtime then using this pattern is an overkill, let us look

at an example.

(Refer Slide Time: 2:19)

The Composite
Patterns model
dynamic
aggregates

Fixed Structure:

% [I
[ours | [vhse] [rery] [X
lOrganimim Chart (variable aggregate):
. A
==

Dynamic tree (recursive aggregate):

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

@l)

ivnHowEmw
Let us say we have a pothole hierarchy here. A car consists of many doors, many wheels, battery
and engine is a hierarchy but should we use the composite pattern here? No, here the groups are
not formed dynamically, there is a fixed structure here, there is no dynamic forming of groups.
So, applying the composite pattern here will be an overkill and make the design more

complicated than required because the problem is very simple.

Similarly, let us see that there is hierarchy here, a university contains many schools and each
school contains many departments. Now, what about this? This is also a hierarchy and school
may contain many departments some schools and the university may contain many schools and

SO on.

But again, we will not apply the composite pattern here, because we do not form the groups here
dynamically, this is a fixed structure here. If you see the problem here that we have a program
written where we have some groups here called as blocks, they contain simple elements or other

blocks and form larger blocks and so on.

The program contains some blocks which contain simple statements, we can form larger blocks
by using the simple blocks and simple statements and still larger blocks using the other blocks
and simple statements and so on. This is the situation where the composite pattern should be

used.

And these two places if we try to use the composite pattern that would be an overkill, the simple
class structure is presented here is enough, we do not need a composite pattern here, because we

dynamically do not form larger groups and group containing more groups and so on.

(Refer Slide Time: 5:24)

Container north = new JPanel(new FlowLayout()); [} Composite layout M= E3 W
rrth adden TuttonCatton 1; Buton1 || Buon2 | example:
north.add(new JButton("Button 2')); Center Button jpane]
Container south = new JPanel(new BorderLayout(); Southwest Southeast

south.add(new JLabel("Southwest"), BorderLayout. WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

JPanel, a part of
1/ overall panel contains the smaller panels (composite) Java Swing package.

Tpanel overall = new JPanel(new BorderLayout(); ' It is a container that

overall.add(north, BorderLayout.NORTH); can store a group 9f
components. The main

overall.add(new JButton("Center Button"), BorderLayout.CENTER); 'y

task of JPanel is to| /£
S L A B organize components %

&)
- ‘i
frame.add(overall); i
NPTEL ONLINE LAY
CERTIFICATION COURSES Y

Now, let us see the use of the composite pattern in Java GUI, that is Java swing, those who are

IIT KHARAGPUR

not very familiar with the Java swing there is a Java user interface. The JPanel is a part of the
java swing package, it is a container that can store a group of components and the component can

be primitive or composite and the main task of the JPanel is to organize the component.

As the problem states, can see that, it is straight application of the composite pattern in the Java
swing package, the composite layout here contains some primitive elements like two buttons and
there is a center button and then we can create a more or a larger composite using this and so on,

let us see the code here.

We have a container north which is a JPanel and we define the flow layout for that and then we
add a J button here, button 1 and then to the north which is a container or a composite we add
button 2 and then we create a container south and this is again a JPanel and then we are to the

south label Southwest and then we are Southeast.

And then in the JPanel over all, overall JPanel which is new JPanel here overall, so to that we

add this north which is a composite and also we add the primitive element, a center button, so

Southwest and Southeast these are composite and then the final one we add the north which
contains, which is a composite of two buttons, we add the center button and also we add the
south. And then to the frame we add the overall. So, we can see here that we are grouping here
elements and adding to a composite forming larger composites and so on, this is an application

of the composite pattern.

(Refer Slide Time: 8:24)

* Why do you declare the methods to handle
children in the abstract class?

— Only the composite class has any use for them? Congonrt
h]] N operation()
— Is it not poor programming practice to have these
Leaf Composite <>

methods inherited by primitive classes, which have
no use for them?

peration() | operation()
other()

* There is a tradeoff here between safety and

e

y
,m“ / A
NPTEL ONLINE \ A
CERTIFICATION COURSES b
A

Now, how do you declare the methods to handle the children in the abstract class? Because if we

transparency

IIT KHARAGPUR

add the children in the abstract class then these are only useful for the composite, just see here
that the component is the abstract class and should we add the children management operations

on the component?

Just remember that the children management operations are useful only by the composite, the
leaf they do not have children and they should not implement these operations. Would it be a
poor programming practice if we have the children management operations defined in the
abstract class? What do you think? That leaf will not have any use for them and would it be a

poor programming?

There is a tradeoff here, one is that whether the client handles all the elements in the design
similarly or he has to do anything separate? So, there is a tradeoff here, that there is a violation of
the design principle that we are trying to define some operations in the abstract class which the

leaf has no use for them. And the other way we are trying to have a uniform operations defined

for the client.

(Refer Slide Time: 10:22)

pPRPeITI SO BN

* If the child management methods are moved = Elegance
from the abstract class to the composite:

— The client can no longer call these methods on
primitive objects, improving elegance.

* However, this gives primitive and composite
objects different interfaces:

— Which is what the design patterns attempt to avoid

]

y

NPTEL ONLINE N 4
CERTIFICATION COURSES ¥

IIT KHARAGPUR

If the child management methods are moved from the abstract class to the composite so they will
become different basically, then it looks like more elegant but then the primitive and the
composite get different interfaces so you can see the tradeoff here, one is that we are trying to
debate between the elegance of the design and also from the clients convenience whether it

appears uniform or not.

(Refer Slide Time: 11:02)

MenuComponent Composite
Pattern:
*
add) Example 1
X remove()
display().. Class Structure
to store
T Restaurant
: ' Menu
MenuItem Menu
display() add()
remove()
display()...)

)

How can the entire menu be displayed?

]
NPTEL ONLINE N4
CERTIFICATION COURSES ¥
W b

We will go for client’s convenience, and we will sacrifice little bit of design elegance and we

IIT KHARAGPUR

will have typically support the client management also in the abstract. So, now let us look at an
example, let us say we have a restaurant menu. The menu is grouped, there are some primitive
menus which are vegetarian, non-vegetarian, there are Chinese dishes, there are English dishes

and so on, under that there are primitive elements.

So, the menu has different sections, now we want to have a solution, a design solution to this
menu we can straight away use the composite pattern, the menu component is abstract class
where you can add remove display menu, the menu item is a primitive one and the menu

contains many menu components, the manager interacts with the menu components.

(Refer Slide Time: 12:25)

Menu " Example 1
menuComponents: ArrayList
add()
remove()
display()...

1. Menu to MenuComponents association
implemented with an array list data type.

2. Let us examine the implementation of print()
in Menu and in MenuItem classes...

NPTEL ONLINE LN 4
CERTIFICATION COURSES §

Now, on the implementation side, for the composite menu how will it store the children? A good

IIT KHARAGPUR

solution is to use a ArrayL.ist and then we can add, remove, etc. very easily. Now, let us examine

how to use the print function, let us say the manager wants to print the menu.

(Refer Slide Time: 13:00)

Class Menu implements MenuComponent{...
public void display() {
System.out.print(“\n" + getName()):
System.out.printin(", " + getDescription());
System.out.printin("---------------- g -
Iterator iterator= menuComponent.iterator();
while (iterator.hasNext()) {
MenuComponent menuComponent =
(MenuComponent)iterator.next();
menuComponent . print(); X

|
NPTEL ONLINE N / A
CERTIFICATION COURSES Y

So, the class menu implements menu component, menu component is the interface and then the

Example 1:
Code

IIT KHARAGPUR

display, it prints, it uses an iterator and then for all the menu components it calls the print as long

as there is a next element it just calls the print.

(Refer Slide Time: 13:35)

class MenuItem implements MenuComponent{

public void display() {
System.out.print(" " + getName()):
if (isVegetarian()) System.out.print("(v)");
System.out.printin(", * + getPrice()):
System.out.printin("--" + getDescription());
} 3

| Y
N N . by
NPTEL ONLINE LN / A
IIT KHARAGPUR CERTIFICATION COURSES %

And for the primitive one, it just displays the price, name of the menu, price and some

description. So, the primitive element just displays this and the composite menu invokes the print

of the primitive elements.

(Refer Slide Time: 14:00)

* Design a class structure to model a Unix type Exercise 1

file hierarchy ...
P

bin dev etc home ib mnt proc root shin tmp usr

mthomas stul

bin class_stuff pr%ﬁ\e
foo bar

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

Now, let us do another exercise, let us say we have a file hierarchy, a Unix type file hierarchy,
where a directory can contain files and other directories. Look at the root directory it contains
some of the files and some directories. And the directories in turn can contain more directories

and files. So, what will be the solution here?

(Refer Slide Time: 14:42)

Folder |, Exercise 1:
ooy | Solution
delete()

print()
File i
Directory .
delete() delete() N
print() print(,
add(Source) o/

IIT KHARAGPUR

\ 4
f |
NPTEL ONLINE ™ / h
CERTIFICATION COURSES Y
|
\ ¢

Again it is a composite pattern your folder is the interface and then it can contain primitive files
or it can contain directories. The directory is the composite, folder is the component which is the
interface, the directory contains many children some of the children can be directories or there

can be primitive files.

(Refer Slide Time: 15:14)

PP L AT[I O BN
Now Suppose file types

Componem‘ A are text, image,

setNamel: Video...
*| getName();

getAllFiles(List theList);

g’e‘fConfcm‘s(Lisf

eList); ,
&

| |

Directory || TextFile || ImageFile || VideoFile
setName(); setName(); setName(); setName();
@ getName(): A mNuuo ‘ mo: . QM@: _

e T |

il sl il |

il
‘ NPTEL ONLINE ENAY
IIT KHARAGPUR | CERTIFICATION COURSES ‘ ¥

|
\u

Now, let us say we want to change the problem little bit and say that some of the primitive files
can be like text files, image files, video files and so on, so how do we change our design? So, this

is again the composite pattern, here we have many times of primitive files, text file, image file,

video file and so on and then the composite here that can contain many files some of them can be

text file, image file, video file and also the directors.

(Refer Slide Time: 15:54)

PP eIEIs SO sUN

Composite Object
Model

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

ivfoemwin®

But what will be the object model? The object model is that we start with the basic leaf level
objects and see that how they are formed into composites, the larger composites and so on, it is a
tree hierarchy form here. We can take a specific example, let us say we have files f1, f2 in a
directory called as d and then d1 contains d and another file f3 and so on, so this is kind of the

object diagram that what are the objects contained in the composite objects.

(Refer Slide Time: 16:58)

L S RN A S R

Item Exercise 2:
e Programs
evaie)
: A program block can
% contain simple
Leaf Composite | STatements or other
SimpleStatement Block program blocks..

children

execute() execute() {f*‘]

)
Y

|
NPTEL ONLINE ™ 4
CERTIFICATION COURSES X
| L

Now, let us do one more exercise, let us say a program block can contain simple statements or

IIT KHARAGPUR

other program blocks and then we can form larger program blocks by using these primitive
program blocks, other statements and so on. So, what will be the class structure for this? Please

try out.

If we know the composite pattern we can straight away apply here, the abstract class here or the
interface class here is the statement or we can give some other name here if this name is not very
we can call it as an element or something if that makes it more understandable because statement
appears like a concrete one, make it more abstract, we might call it as a element, program
element. And the program element can be a leaf element like a statement or can be a block, block

contains many elements, each element can be statement or block.

(Refer Slide Time: 18:30)

L R RN A S

* Develop class design of components to be —
handled by an Electronic Circuit Diagram =

editor:

=Should let users group simple components
into larger components.

* Which in turn can be grouped to form still larger
components.

* Larger components should behave similarly w.rt.
select, copy, paste, move,delete, resize, ...

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

Now, let us do one more exercise, we want to develop a class design where we want to handle
components, electronic components which are assembled into boards here and each board can
contain many smaller boards and so on. Typically, an electronic circuit where we have some

primitive circuits like capacitor register and so on, we form large components and that and so on.

And here our design should let designer form components using primitive components and still
larger components using primitive components and some of the composite components and so
on. You can realize that this is a straightforward application of the composite pattern if we know
the composite pattern we can solve it effortlessly, please try to draw the class diagram for this

problem.

(Refer Slide Time: 20:00)

PPNV QLSO GBY

The key to the Composite pattern:

—An abstract class that represents both primitives and their
containers.

—The abstract class Design declares operations like Copy, Move,
Delete, resize, etc. that are specific to graphical objects.

It also declares operations that all composite objects share,
such as

X
* Operations for accessing and managing its children, lik
Add, UnGroup.

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Here the solution, the key to the solution is that we have to define an abstract class that
represents both primitive and the container and we will have operations like move, copy, resize,
etc. that should be applicable to the primitive objects as well as to the composite objects and also

there will be some operations for managing children like add, ungroup, etc.

(Refer Slide Time: 20:32)

Composite
Pattern:
Solution

'_I 0.1 I.__I 0.1

<«<Leaf>> <<Composite>> Resistor Capacitor mbu'g“
- 2 Resize() Resize() Resize()
ke T o 0 AddComp()
3 RemoveComp()
RemoveComponent() %
Getchild) gy
General Idea Applied to the designing

example

NPTEL ONLINE
IIT KHARAGPUR

CERTIFICATION COURSES

So, this is the solution here, this is the general idea of the composite pattern and for this specific
case, we will have the basic elements like register, capacitor, etc. and then one board design

which contains many basic elements and other designs, other boards.

(Refer Slide Time: 20:58)

Object

* Because the Drawing interface conforms to
Structure

Design interface,
* Drawing objects can compose other Drawing
recursively:

aDrawing

(o o R

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

This is the object diagram where a composite; may contain only the primitive ones or it can

contain some primitive ones and other composites.

(Refer Slide Time: 21:18)

* Component does not know what it is a part of:

— Component can be in many composites Altematlves---

— Component can be accessed only through
composite

* Component knows what it is a part of
— Component can be in only one composite

— Component can be accéssed directly

S
%
A
NPTEL ONLINE N
IIT KHARAGPUR CERTIFICATION COURSES i
\

Now, there are some alternatives to this the way the solution is done for this pattern. One is that,

once we form the group, a component does not know what it is part of. So, basically a
component knows its children but not vice versa. The other one is that the component knows

what it is part of, so the children also knows to which it belongs.

Then you might wonder that what is the advantage of the second one, why should a component
or a basic element know to which it belongs, what would be the advantage of that? The
advantage is that if the same element is part of many components we might save by repeating
that across all the components because it may belong to multiple components.

So, here the component may be in multiple composites and it can be accessed only through the
composite. The other case the component can be in only one composite and it can be accessed

directly.

(Refer Slide Time: 22:52)

L R S R

Composite: Some Issues
* When components are part of a single composite: m m

— Aisapart of Bif and only if B is the composite of A
— However, duplicating information can be dangerous!

* Problem: How to ensure that references of
components to composite and composite to
components are consistent?

N

]

\ /’\
NPTEL ONLINE ™
CERTIFICATION COURSES |

I

IIT KHARAGPUR

So, when the components are part of a single composite, if A is part of B, if and only if B is
composite of A, but then here we can have duplication of information and the problem will be
that how to ensure that references to the components to composite and composite to component
are consistent if we add composites, delete components, delete composites and so on it may

become inconsistent.

(Refer Slide Time: 23:43)

* The public operations on components and Ens_uring
composites are: consistency

— Composite can enumerate components

— Component knows its container
— Add/remove a component to/from the composite

* The operation to add a component to a composite
updates the container of the component

* There should be no other way to change the container
of a component '

i
r
P "
‘ -
NPTEL ONLINE e Al
IIT KHARAGPUR CERTIFICATION COURSES b
| i

To ensure consistency, the composite should be able to enumerate components, the component

.o

knows its container and in the presence of add, remove operations to add a component to a
composite we must update the container of the component and there should be no way to change
the container of the component, just to ensure the consistency when we add a component we do
the operations consistently that in the composite we add it and also in the child we are the to

which it belongs, and when we delete we also do the same operation consistently.

(Refer Slide Time: 24:31)

addChild() in Composite

public void addChild(Component child) {

childArray.add(child);
child.setParent(this);

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, this is the add child in the composite we not only add child here to the composite but also we
set the parent for the child class.

(Refer Slide Time: 24:45)

PP PQTI S OGEBDY

Exercise 4: Java GUI

Q: How can we add any v;idget to
another, for example panels to an
applet?

W
y
,4' 2N
NPTEL ONLINE ™
CERTIFICATION COURSES ’
! L

Another example here about the Java GUI. The problem here is that how we can add a widget to

another for example a panel to an applet?

IIT KHARAGPUR

(Refer Slide Time: 25:04)
PPR P QHI OB
public class MyApplet extends java.applet.Applet {
public MyApplet() { _

add(new Label("My label")); e
add(new Button("My button")); CumposEg ik
Panel myPanel = new Panel();
myPanel.add(new Label("Sublabel"));
myPanel.add(new Bu’r'ron(“éubbu’r'ron"));

add(myPanel); A
) .

NPTEL ONLINE N
IIT KHARAGPUR CERTIFICATION COURSES ’

\ I

You might have done this kind of programming without knowing that you have been using the

composite pattern. The applet, my applet extends the java applet and here you add some

primitive elements like label, button and then on a panel this is a composite the panel you add

sub label, sub button and then finally add the panel to the applet.

(Refer Slide Time: 25:38)

PP AEI PO

T

T

Components
-t
[Panel”]
T I

Texthonent java.applet Applet /“k‘

@

NP
CERTIFICATION COURSES
)

IIT KHARAGPUR
ivHowrmwinc

The Java GUI makes use of the composite pattern profusely just look at the AWT components
here taken from the Java class diagram. So, see here that the component is an interface and there
can be primitive components here like button, canvas, etc. or there can be composites here, just
see here a direct application of the composite pattern here you can notice here, that there are
primitive elements and then there is the composite here. And then each composite can be a

window, a panel frame dialogue and so on.

(Refer Slide Time: 26:41)

Swing
Components

JComboBox

JTextComponent
AN

IIT KHARAGPUR

P =
NPTEL ONLINE N\ AN
CERTIFICATION COURSES %

The Java swing a small difference here, here these are also containers as you might know that in

the Java swing; these are also containers the J button, J label and so on the small difference in the

diagram here. So, here every widget is a container and every container is a component.

(Refer Slide Time: 27:17)

L S R B R R

Adapter Pattern

IIT KHARAGPUR

y /\
NPTEL ONLINE My
CERTIFICATION COURSES ¥
\ b

So, we have completed our discussion on the composite pattern, now let us look at another very
important pattern called as the adapter pattern.

(Refer Slide Time: 27:34)

PP ATl PO

Intent: Adapter Pattern

— | Convert the interface of a class to the interface

expected by the users of the class.

— Allows classes to work together even when they have

~=

incompatible interfaces. ~
- . .
oy Also universal adapters?

Example (non-software):

You went to U.S.

Had an Indian electrical appliance?

/
IIT KHARAGPUR CERTIFICATION COURSES 3
|

- HowcanyouuseitinUs? Bl = »\

-y = el "W::

- Use Adapters! __ & = /
NPTEL ONLINE PN AY ‘

The intent of this pattern is that how to convert the interface of a class to the interface expected
by the users of the class. A class might have many users and they might use to calling some
methods but the class under consideration has different methods. So, how do these incompatible

classes work?

Let us look at an example which is a non-software example. Let us say you have been using
some appliance, let us say mobile phone’s charger and you went to USA and you had this
charger, your charger in India is like this but there you find a socket like this, so how do you
make your charger work in USA? You use adapters, so this is the adapter that fits into here and
you can plug this into this and if you go to different countries UK and so on, the charger, the
adapter for the USA will not work in UK, there you need a different type of adapter so you might

have a universal adapter which fits into the socket of any country you visit.

The same thing happens in software; a class invokes methods of another class but then you want
to use a different class which has different set of methods. So how do you make these two
classes work? So, that is about the adapter pattern we are almost at the end of this lecture, we

will continue from this point in the next class. Thank you.

