Object Oriented System Development Using UML, Java and Patterns
Professor Rajib Mall
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 49
Composite Pattern-I

(Refer Slide Time: 00:25)

Composite Pattern

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES 41

Welcome to this session, in this session we shall be discussing about the composite pattern.

(Refer Slide Time: 00:30)

Composite: Introductio 11 rup
+A composite is a group of M

objects in which some objgcts 3

contain others: 0 -y |
« An object may represent agroup. A
d: Leaf | |e: Leaf
« Or may represent an individudhitem. , -

IIT KHARAGPUR

SN
%ﬁ
NPTEL ONLINE AN / *
CERTIFICATION COURSES '
y | v
| ¢

Now, let us get started. Many times, while solving an application we find that there are

groups of objects which contain other primitive objects and groups of object, it is a very

common problem. Just to give an example, that you might be having a drawing package, in

the drawing package you may draw lines, you may draw circles, rectangles, and then you

may select this and make this into a group.

And then you can deal with the group just like a primitive element, for example you might
copy the group and the group will appear here, you might draw few more primitive objects
and then again you may form a group which contains two groups and a primitive object, and
then move it that will just like primitive object is moved you can move a group, you can

reduce the size or expand the size, you can copy it and so on.

This is the very common problem will see that in many places it occurs, basically if you look
at here a group contains some leaf elements and also can contain a group and this group in
turn contains another group here and another leaf here, and this group contains only primitive
elements. In the drawing example we first draw the primitive element for one group. And
then add more primitive elements and then form a larger group and then add more elements
or we might repeat this group here and all these will appear here and then we form still a
bigger group and so on. This is a very common problem in many applications. So, here an
object may represent a group or it may represent a leaf level item or an individual item. But

then they must behave similarly.

How do we structure the classes here, that is the main problem, it is a structural pattern where
we are interested in determining how the different classes participating in the group, some of
them are primitive, some of them are composite how will they be structured? So, that is the
main problem that we are trying to address here.

(Refer Slide Time: 03:59)

rPPRPQHI SO

Composite: Introduction 11 Grop

«A composite is a group of %\

a: Leaf

objects in which some objects

contain others:

« An object may represent a group.

« Or may represent an individual item,

nle: A CAD Design ---

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Another example is a Computer Added Design package, you can draw a very sophisticated

design here a layout of a VLSI and then here you form many groups and the groups are

repeated changed and so on. And it makes it easy to draw just because you are using the

notion of nesting objects, forming groups and so on.

(Refer Slide Time: 04:36)

Example: Consider a CAD Editor... :‘

* You can build complex diagrams using
simple components]

— Group components to form larger
components...

- ...which in turn can be
grouped to form still
larger components

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

There are other examples, this is a mechanical CAD, mechanical Computer Added Design

editor. You can build complex diagrams using simple components. For example, you select

the side A, side B and bridge and then this becomes a group. Now, you can have, you can

copy it and paste it, add more primitive elements from larger groups and so on.

So, here just using the drawing package we selected copy paste here, we got the same one
here the group is pasted, we can resize and so on. We the group we pasted here resized the
group and still made we can make a larger group and so on. So, we again paste it the group
we resized and then we copied it and again paste it, so these are some of the common things
that are drawn in an editor. Now, let us our focus here is that how do we use the composite

pattern, what is a good solution for this problem.

(Refer Slide Time: 06:29)

L i S BN A S RN

Composite Pattern: Intent no
* Compose nested groups of objectsintoa| ““753 =
tree structure to represent part-whole :i -
i

hierarchies.

— Clients should be able to treat individual
objects and composites in the same way.

J

NPTEL ONLINE N / p
CERTIFICATION COURSES d
¥

IIT KHARAGPUR

The intent of the composite pattern is to compose a nested group of objects into a tree
structure. A nested group of objects into a tree structured that represent part -whole
hierarchies group consist of some primitive elements and another group here consist of
primitive element and another group the top-level group here contains pre primitive elements
and a large group. And one thing we must keep in mind that in these applications the user
must not be able to do different things when dealing with a group or a simple element, a
primitive element we can copy paste you can move, you can resize and so on, and the same
thing we must be able to do using similar operations on a composite item, so that is the

requirement here.

(Refer Slide Time: 07:50)

PPV QAHI SO

Why Composite Pattern? (Motivation)
* What problems would occur if composite

pattern is not used?

— Client code might have to treat primitive and
container classes differently...

— Makes the application more complex.

— Additions of new types of components becomes 3
troublesome...

o h)
J
I
NPTEL ONLINE i .‘/6'
IIT KHARAGPUR CERTIFICATION COURSES A
!
A K

Now, first let see that if you do not use the composite pattern what would happen? If you do

not use the composite pattern one is that the user or the client might have to treat the
primitive and the composite differently, for example if it is a primitive element we might just
move it if it is a composite we might have to move repeat the move operation across all the

elements and so on that will be not a very elegant or acceptable solution.

The application would become complex, and if we add new types of primitive elements and
new groups it would become extremely complicated troublesome for the user. And as you
can see that the composite pattern solves a very important problem and in the right situation
you would have no difficulty, in identifying the right situation and using the composite
pattern which will really help in making your application elegant.

(Refer Slide Time: 09:16)

Problem: handling nested group of objects
Composite <> Leaf

children

Composite
Solution:
First Attempt

forall() operation()

For all chidren c: |0 Lets see how a typical

c.operation() designer attempts to
design a class structure |
from scratch..

o
|

!

o\
NPTEL ONLINE N / t
IIT KHARAGPUR CERTIFICATION COURSES A
{ ¥

Now, let see if we pose this problem to a novice programmer that see we have this group of
elements which would be able to form group of elements using primitive elements and then
we can form larger groups containing groups and primitive elements and so on and the group
and the primitive element must behave similarly with respect to copy, paste, resize, move,

delete and so on.

Now, how will a programmer approach this problem, let see that the mistakes he will do so
that it will become clear to us that the elegance of the composite patterns, if we pose this
problem to a novice the first thing that will strike to his mind is that there is a nested group of
objects. And how does he do the nesting. So, might so this be the nested group of objects and
he will try to address this problem and a typical designer who does not know the composite

pattern, he will come up with this kind of solution.

A composite contains many leaves and then the composite method supported is for all and
here for the leaf it is operation. And if you want to let say move a composite it will invoke the
for all and the operation specific operation may be move as just written here operation, the
operation may be move, may be delete, may be resize etc. So, the composite client would

have to call for all and then that will intern call the corresponding operation and the leaf.

But if the client deals with a primitive object you would have to call the operation directly.
Now let see what are the difficulties with these solutions, as you can imagine the first
difficultly is that the client has to treat the composite and the leaf separately, he has to invoke

for all and the composite and then the leaf he has to directly call the operation.

And another thing to notice here is that the single level of hierarchy, what we really needed
was a nested tree and also the composite contains one type of leaf, we wanted it to contain

many other composites and leaf, definitely not a very good solution.

(Refer Slide Time: 12:45)

Problem: handling nested group of objects
Composite <> Leaf

Composite
Solution:

children ; .
forall() operation() KRS First Attempt
if Xis "
For all children c: Cﬁmposite
¢.operation() - then
j Mark=1/100 X forall)
Analysis of Solution: Naive solution... else
X.operation();
What are the problems?)
-Only single nesting level (depth =1) : ‘:
-Composite and leafs always treated differently, Difficult to extend. ~N
NPTEL ONLINE ™ \/ h ‘
IIT KHARAGPUR CERTIFICATION COURSES i
i ¥

It falls way short of what is required, it is a very naive solution; the problems are that only a
single level of nesting, the composite and leaves are treated differently, difficult to extend for
example how do we add new composites, new leaves and so on, not a good solution. And if
somebody is posed this problem as an examination question and he gives this answer then the

examiner would possibly award him 1 out of 100 as not a good solution.

You can see here the client has to distinguish between weather he is dealing with a composite
or a primitive operation, if it is a composite then it has to call the for all, otherwise he has to
call the operation directly. Getting a complex group out of this is very difficult, nesting is not
supported different types of primitives different composites is very hard to support not a good
solution. Now, let say we ask the designer to back to the design table and to come up with a

better solution.

(Refer Slide Time: 14:23)

Composite:

.| children Mark= Attempt 2

Item if there are children then J 40 / 1 00

for all children ¢: c.operation()
operation() else doSomething();

Surely there are improvements...
Unified treatment in client and unrestricted depth of parts..
What are the problems? &

-Does not handle different item types: primitive and composite (/ .‘ :
-Difficult to extend with new kinds of leafs or composites. %

-/
NPTEL ONLINE N h
IIT KHARAGPUR CERTIFICATION COURSES 1
| |

{ f

The second attempt tries to address the problem that there was no hierarchy, there was only a
single level of hierarchy. He might come up with these that an item contains many children
and the item can have further children and so on, you can see that there is a multiple level
here possible. And here in the item can be a composite or it can be a primitive element and if

it is a composite, if there are children then for all children do the operation else do something.

Again, not a very elegant solution because how do we support new types of primitive
elements, new types of composites and also if then else does not look okay, definitely there
are improvement over the previous attempt as the previous attempt was restricted to a single
level of hierarchy and here we are having multiple levels and also kind of unified treatment
for the composite and the primitive element the client does not have to really distinguish
between the composite and the primitive element he just makes a method call an operation
and then the operation internally checks weather there are children then do the operation for

all the children otherwise do something.

But then what are the problems? The problems are that does not handle different item types,
different primitives and different types of composites, difficult to extend. Now we have to ask
the designer to go back to the design table and come with a better solution but if we as an
examiner we have to give a mark to this the extent to his it satisfies the requirement of the

original problem we might give 40 out of 100.

(Refer Slide Time: 17:11)

pPRP QIO

*[children Attempt 3:
Handling
different Types
Item of Items
New operation S
e o — Mark
elements:
ZF 50/100
1f there are children then W
o ' ‘ ‘l"’ I | . if there are children then
s - - for all children ¢: ¢.operation()
Ifeml I‘I’em?.) | ese doOperation2() Py

operation() operation()

!
'
NPTEL ONLINE ™ ,/ ‘

IIT KHARAGPUR CERTIFICATION COURSES |
1 y

Now, the attempt 3; the designer comes up with this design. Extended basically the previous
solution there is hierarchy here the item and then there are different types of items supported
here through inheritance relationship, the item can be item 1, item 2 and so on. Again, this is
not a good solution definitely improvement over the previous one because different types of

item can be supported primitive different types of primitive and composite can be supported.

But then, one is that item is a concrete class and then these are all concrete classes and then
we will have difficulty with respect to the list of substitution principle and also to group items
into multiple primitive elements and composite elements does not look very correct, we have
been able to add new types of elements that is the improvements and if we have to give them
mark, will say that it is 50 out of 100, so this is the third attempt and the designer.

(Refer Slide Time: 18:52)

PP QIHI SO

children Finally:
" Composite

Hoia Pattern

— Mark=
operation()
100/100

I | | Separate the N
composite class

Item2 Iteml | |Composite O

operafion() operafion() | [operation()-!--------- ’ for all children c: c.opemion()J

\}

-
N\ 4\
NPTEL ONLINE ™ /
IIT KHARAGPUR CERTIFICATION COURSES A
]
W f

Now, we ask the designer to go back to the design table and come with a better solution, now
he comes up with a solution that an item is abstract here does not violate the basic principles,
object-oriented principles like the Liskov substitution principle and then the derived classes

are either primitive elements or a composite, there can be different composites of course.

And then the composites contain the items which can intern be primitive items or may be
composites themselves. And this is the solution that we required and this exactly is called as
the composite pattern. Here an item can contain many primitive items or it can contain some
primitive items and some composites and so on, so this is the solution that we required and

this is called as the composite pattern as you can see.

If you do not know the solution you will have to really struggle to come up with this solution
and that is why it is good to learn this composite patterns well and apply it wherever required

to come up with elegant object-oriented programs.

(Refer Slide Time: 20:41)

rPRPQEI SO

Composite
Design
Pattern

Item | »

- Problem: How to
organize a hierarchical
object structure so
that the clients are
not required to be

children

aware of the

Leaf Composifé hierarchy?

\ For all children c: =
operation() operation(). ¢.operation())
¥
\

AN
NPTEL ONLINE ™ «/
IITKHARAGPUR | CERTIFICATION COURSES (
| ¢

]

Now, this is the pattern just redrawn that there can be multiple leaves and multiple
composites. | just simplified representation of the composite design pattern. The composite
contains many children and each child can be a leaf object or a composite object. And the
problem the composite pattern addresses as we have already said that how to organize a

hierarchical objects structure.

So, that the clients are not required to be aware of the hierarchy, the deal with large
composites small composites, primitive objects exactly in the same way, and for all as you
can see that they just invoke the specific operation, without having to know whether it is

large composites small composite or a leaf.

(Refer Slide Time: 21:51)

PPRP QB LOG

Composite
Pattern:
Issues

‘What is the class diagram?

How does the client interact?

‘What operations are defined for:

» The component, the composite, and the leaf?

* How are they carried out?
v

‘How is the design implemented?

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, let us look at the issues here. We must to be able to understand and apply the composite
pattern we must know the class diagram which | have already seen, we must know how the
client interacts with a composite object and the primitive objects. What are the operations that
are defined for the component the composite and the leaf? How are they carried out and how
is the design implemented that is what will be the Java code look like for a given class

structure.

(Refer Slide Time: 22:35)

------ > Component Composite
Mo Pattern
operation()
|]
Leaf Composite
operation() operation()
other()
‘Each node of the Component structure should respond to some common

operation(s).

‘The client can call operation of the Component and the structure
responds “appropriafely”.

;/
o
'\
NPTEL ONLINE ™ /
IIT KHARAGPUR CERTIFICATION COURSES (
¥

o

|

|

Now let us address those issues, the first is class diagram. This is a very elegant solution and
if we say that composite pattern this must come immediately to the mind that there is abstract
component and then there are primitive leaf elements and then there are composites. The
composite contains many components and each component can be a leaf for a composite. The
client inbox the operation and the component and the component may be either a leaf for a

composite. And the operation is defined here is abstract class and necessary over written here.

(Refer Slide Time: 23:27)

L S RN A i

* The client is a class invokes composite:

—Manipulates objects in the composition through the

Component’s interface

* Example: A CAD Drawing

~ Client > Component
operation()
add(Component)
remove(Component)

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

)
\!

y
N / A ‘
’
| b
r

\

Now, let us look at how the client interacts with the composite pattern. The client

manipulates the composite through the component interface, component is the abstract class

and the different methods that are defined and the component it manipulates the different

objects, the object can be either a primitive object or a composite object.

So, these are the operations the operation add remove and the client evokes these without

knowing weather is doing dealing with a simple primitive object a small group or very large

group, the same operations are supported by all. So, this typically happens in a CAD drawing

there are many other applications as we will see just now.

(Refer Slide Time: 24:30)

* Component is an abstract

class:

- Declares the interface for
accessing and managing its
child components

- Defines an interface for default

L R S R R R)

C

omponent

operation()

b

behavior.

<>

Leaf Composite
- Optionally provides
access to the operation() operation()
parent component other()

NPTEL ONLIN

E

IIT KHARAGPUR CERTIFICATION COURSES

Here, please remember that the component is abstract class it declares the interface which
will be usable by the client, it defines some behavior that are common to leaf and composite

and the composite may define more methods will see these methods.

(Refer Slide Time: 25:08)
PR QHI SO GEN
* Leaf o Other
- Aleaf has no children. [Component |+ Participants

— Defines behavior for primitive opwretind
objects in the composition. .

| Leaf | | Comﬁosin ©
: operation() | | operation() |
¢ Composite oher) |

— Defines behavior for components having children.
— Stores child components.
: .
- Implements child-related operations in the
Component interface.

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, the leaf has no children and it just defines the operation that is defined in the
component. The composite in the addition to the operation define and the component must
have operation for child management. For example, add child, delete child and so on. So, the
composite defines behavior for the components children store or add child component and

other child related operations invoke different operations and the child delete etc.

(Refer Slide Time: 25:55)

PPRPQII SO GEY

* (lients use the Component class Collaborations
interface, which in turn interacts with objects.

Client

* If the recipient is a Leaf: PR

operation()

—Handles the request directly...

Leaf Composite O

* |f the recipient is a Composite: ~ grird| chrord

—Forwards the request to its child components...

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now, the client interacts using the component interface and the component may be a leaf
composite if the recipient the client method invocation is a leaf object then it directly handles
the query if it is composite then it just invokes the corresponding operations on the children

objects.

(Refer Slide Time: 26:30)

FPRPQHI SO

Composite:

top : Composite
Object Diagram

a: Leaf b : Leaf top : Composite | | ¢ : Leaf

RN

top : Composite | | e : Leaf

d:Leof| | e: Leaf ¥

A,
| NPTEL ONLINE "“'\/ I
IIT KHARAGPUR ‘ CERTIFICATION COURSES IR
il ¥

And this is the object diagram, different objects here there are composite objects which

contain other objects and primitive objects. So, it will be note very difficult for you to draw

the object diagram given a code or a running of a code.

(Refer Slide Time: 26:55)

Consequences s
1 Makes it possible to define recursive =
composition of primitive and composite £, |
objects. ,,,,,:;03 C,WT,O

other()

* Makes invocations by client simpler.

~Client doesn’t need to know whether it is dealing
with leaves or composites.

* Makes it easier to add new kinds of

components. y

4.
'N
NPTEL ONLINE ™ /
CERTIFICATION COURSES "
‘ 4

y

IIT KHARAGPUR

This patterns it becomes possible to define recursive composition of the primitive and

composite objects that was what was required to form the groups. And the client side the

client invocation is very simple does not have to distinguish between the composites and the
primitives from the programming point of view one can easily add new kinds of primitives

and composites.

(Refer Slide Time: 27:32)

* Use the Composite pattern when: Applicability

— You need to represent part-whole hierarchies of objects L:)
wobef bilest | tRiGemp | |eibeed
- You want clients to ignore the differences between parts '
and wholes

— The parts should be created dynamically - at run time:

* Example: to build a complex system from primitive components
and previously defined subsystems.

* This is especially important when the construction process will
reuse subsystems defined earlier.

Y
o/
NPTEL ONLINE N A
CERTIFICATION COURSES y
) k

This pattern is applicable wherever there is a part whole relation between objects but then we

ha

e 1)

IIT KHARAGPUR

must be able to form larger groups from dynamically using the primitive elements and other
groups, so this is very important that this is applicable when there are part whole hierarchies
but then we must be careful that we must have the problem that involves creating composites
using primitives and other composites dynamically at the run time. We will see some

examples where will again highlight this point.

This is what is important not only the part whole hierarchies exist, but also the parts the
composites should be created dynamically at run time we should be able to identify some
elements and then form that into larger groups and then still form larger bigger groups and so

on.

We can copy a group multiple times and make that into a larger group with more primitives
and so on. We will take some examples and look at the kind of code that will correspond to
these design pattern but we are almost at the end of this lecture, we will stop here and

continue in the next lecture, thank you.

