
Object - Oriented System Development using UML, Java and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 44

Observer Pattern 2

Welcome to this session! In the last session, we had started to discuss about the Observer Pattern.

The Observer pattern is an important pattern and has many applications. We had discussed to

some extent, let’s quickly revisit what we had discussed and we will proceed from there.

(Refer Slide Time: 00:43)

The problem that the Observer pattern tries to address is that when the model object changes

state asynchronously and is accessed by several view objects, how should the interactions

between the model and the view objects be structured. Just to tell little bit about the problem, a

good solution for any software consists of a layered solution, at the bottom of the layer is the

model, the model or the subject is the one which keeps track of the data, any update on the data

is updated on the model and there are several view objects.

The view objects may be of different types as in this example and when the model object

changes. For example, we have a database keeping track of various student records and then we

have various applications running here. One is possibly grid computation, one is fee

computation, another is awarding prizes, keeping track of attendance and so on.

Typically, we have a layered solution to problems like this and we have the model objects which

keep track of the data and the view objects. In a typical situation like the one we mentioned the

one we mentioned to put the student database. The View objects they pull the data from the

model object, any necessary data they pull here by sending a request and do whatever they need

to do display and so on. But then the problem here is that the model object state changes

asynchronously in the student example, the student state does not change asynchronously, the

grade of the students get reflected at the end of the semester they do not every now and then.

So, the pull solution works will for example select student database etc. But then there are many

applications as we will see that the model keeps on changing and we do not know when that will

change and the view has to have a consistent display of the model whenever the model gets

updated the view also should also get updated and in these situations, how should the

communication be structured i.e., the problem that the Observer pattern addresses.

The solution that is defined by this pattern is that there is a one-to-many dependency between the

model object and view object. The different view objects are dependent on the model object. So,

that is many-to-one dependency and when the model changes, it updates all the views

simultaneously the model knows when there is a change occurs and it updates the views in

contrast to the previous solution we said, where the view objects pull the data from the model.

(Refer Slide Time: 04:52)

The Observer pattern helps to develop a good design of an application. If we are not careful, we

might get a very poorly design GUI where the Observers or the GUI, they not only do the

functions of GUI, but also listen to events they have domain logic built into that, application

logic etc and this is an example of bad code because it will be very difficult to maintain this

code, understand and maintain this code.

We need to separate out or layer a distinct layer should be there between the model and the view.

The view should be concerned with only the user interaction that is displaying to the user that is

the view and the model is the one which keeps track of the data. But this Observer pattern tries to

address how the model and view should communicate.

The model view layering is not new. It is a well-accepted design solution, layering between the

view and the model, the views should be concerned with only display. The model should be only

concerned with how to keep the data. The problem that this Observer pattern addresses is that

how should the view and the model objects communication?

(Refer Slide Time: 06:41)

This is a typical layered solution where we have the subject or the model keeps track of the

various data, maybe in XML database or maybe in a DMS or in a file and the data changes

asynchronously. Maybe there are mouse clicks, maybe there is a communication line and so on,

the data changes. But the problem that this pattern tries to address is that how do these view

objects, they communicate with the model objects. The pull from above will not work because

the view objects would not know when exactly changes to the model of occur, they occur

asynchronously.

(Refer Slide Time: 07:36)

So, here the solution is that, the solution proposed by the Observer pattern is that, if we have the

model object hard coding the ideas of different view objects and updating them is not a good

idea. That is a poor solution. The pull from above is an okay solution, but does not work for

asynchronous update of the data.

For asynchronous update of the data, if we reverse these arrows and have the model object keep

track of the ideas of the view objects is not okay. Why is that the reason is that, if we hard coat

the references of the view objects then it will be very difficult to change, we cannot have new

types of views attached, some views dropping out and so on.

In a static scenario, where we have only a fixed set of Observers and they do not change, there is

no chance of change to the view Observer overtime. Then possibly a push solution might work

that the model hard codes or keeps track of the ideas of the view objects and calls the view

objects when there is a change, but we are considering the situation which is dynamic view

objects may switch off or more view objects may get added. There are many applications which

require this kind of situation as we will see.

(Refer Slide Time: 09:29)

The pull from above as we said works only in asynchronous update case that the view objects

know when exactly the update takes place and they can pull the data. But in a synchronous case,

the view objects do not know when the updates will take place and therefore, they cannot just

pull from above.

(Refer Slide Time: 09:57)

There are many situations where the data changes asynchronously. For example, in a simulation

experiment we do not know when exactly a simulation activity will get over and the data in the

simulation engine will get updated. In a stock market we do not know when exactly stock trading

will take place at what price.

In a network monitor, you do not know when intrusion will occur, occurs asynchronously no

idea when it will occur or if you are using a graphics editor, maybe the user will give input by a

keyboard, we do not know when the input will come by keyboard or by a mouse click, we cannot

predict when changes will occur, but then the view should be updated and the views can be

created dynamically; one view maybe a 2D, another maybe a 3D view, another maybe a view

from a different perspective and so on. We do not know how many view objects will be there.

So, that is a dynamic set of Observers. So, the Observer pattern needs to be applied when these

two conditions are satisfied. We want to solve the communication problem between the view and

the model objects and the model objects change asynchronously and the view objects are

dynamic the sense that new view objects may appear some view objects may drop out and so on.

(Refer Slide Time: 11:52)

And also, the view objects may react differently to the same notification not only they vary, but

then the model cannot really take care of what activity will take place in the view objects.

Because they may vary across the view objects one may be a simple mobile phone another may

be a sophisticated smartphone, large screen another maybe a desktop, another maybe a laptop

and so on and in response to a change to the model object, the action that takes place in the view

objects or the Observers may be different.

The solution that the Observer pattern proposes is that we have to decouple the view from the

model, we cannot hard-code the references of the view objects in the model object because that

will eliminate the flexibility that we can add more Observers or take away some of the

Observers. We need to have a solution where we can add more Observers different types of

Observers, the Observers may change, the subject may change and so on.

(Refer Slide Time: 13:26)

An analogy of this situation is an auction, where there are a set of people bidding and the person

conducting the auction. The persons who are bidding, they cannot see who is bidding at what

price but the person conducting the bid can see that updates the latest price and based on that

further bidding takes place, finds out what is the highest at that moment 33 and then updates 33

here and as he updates all the viewers can see that.

The number of bidders can vary and we do not know when the changes will take place. The

Observer pattern works in a similar way that the number of viewers can vary the changes to the

model can occur asynchronously and when it occurs all the persons bidding have to be notified.

(Refer Slide Time: 14:43)

Another example is the stock market. Lot of stock trading takes place in the stock market and

these are requested by various Observers. There is a real-time data feed from the stock market.

But then the different Observers or the customers are interested in different stock. Some are

interested in stock A, some are stock B, some are in stock C, D etc. Now the problem here is that

when there is a change, a new price is there in the stock market.

Somehow the computer here has to notify the corresponding users about a change in the price of

their stock and also the number of customers can vary because they are using a web browser to

observe more customers can switch on and start observing the stock market. So, this is another

situation, where the data changes asynchronously when trading takes place is not predictable and

also how many customers will be there is not predictable.

(Refer Slide Time: 16:09)

The main idea of the solution here is that the model keeps track of any changes that occur the

model is also called as the observable and somehow it keeps track of the references of all

Observers it does not hard-code but then the Observers register with the model by supplying the

references and the observable at any time keeps track of all the Observers were interested in data

and then whenever there is a change, it notifies them the objects then, the Observers then update

themselves. We will see more details of the solution.

(Refer Slide Time: 17:12)

The Observers registered themselves with the model by supplying their reference, the model

intern maintains the Observer references. In the form of an array list whenever there is a model

change to the model, the model notifies all the registered objects whose IDs appear in the array

list and then the Observers once they know that there is a change, they can query specific type of

change.

For example, in the stock market, the Observers may be notified that there is a change in the

stock price but the specific customers might query about whether a stock price of A has changed

another Observer may query whether the stock price of B has changed and so on that is the

solution here.

(Refer Slide Time: 18:23)

In the form of a class diagram, we have a subject which is an interface. The subject defines the

methods attach that is for the Observers to register detach that is when an Observer leaves calls

the detach method and then notify, this is when a change occurs in the model it notifies all the

registered Observers. The concrete subject implements the subject interface and on the Observer

side we have the Observer interface and here there is an update method which is called by the

notify method on the subject side to notify about the changes and the concrete Observer

implements the Observer interface.

(Refer Slide Time: 19:26)

If we try to look at the code, in a notify the code there will be for all observers who have

registered call observer.update and once the update method is called, the Observer might try to

get specific information about the change that has occurred and for that it calls getState, the

getState method body is only return the subject state and then the subject may change

asynchronously by other model objects and so on and they just set state.

(Refer Slide Time: 20:27)

As you can see that by the Observers attaching themselves to the model a one-to-many

dependency setup dynamically and when the model changes it notifies all the dependent objects.

In this way, the Observer and the model are decoupled, but then the model just notifies all

Observers that a change has occurred, does not keep track of what information is needed by

which Observer, just calls the update method and the Observer and the Observers then get state

of the subject or the model.

But a problem here is that, since there may be many Observers and each of them trying to find

out what change has occurred. Just giving an example of the stock market and there may be large

number of Observers who were interested in different stock price data, just saying that the

market price has changed then every Observer tries to check whether his stock price has

changed, this may result in excessive notifications. This we must be aware about the limitation of

this Observer pattern, there are further adaptations and modifications to this pattern to take care

of this situation.

(Refer Slide Time: 22:18)

Now, let us look at the working of the Observer pattern. The concrete subject notifies all the

Observers who have registered and then once it notifies by calling the update method on the

Observer, the Observer intern calls the getState.

(Refer Slide Time: 22:45)

In the form of a sequence diagram, we have a file here which is the model and then there are

several view object, one is an information view, this is all the details of the file size, date created

that modified specific protections on the file and so on and there is a list view which just lists the

file, there may be an icon view which just shows the different file icons and so on. We might

have several views of the same file objects. Now, let us say the file size has changed.

Now all the views have to be updated for the solution we have different view objects attached to

the file object and then as changes to the file locker like there is a save on the file, the user

updates and shapes then the file notifies all the registered viewers during attach they would have

provided their IDs and the file spot of the notify process calls the update and the different views

and then the different views may getState and the state is returned to the Observers and that is the

working of this Observer pattern.

(Refer Slide Time: 24:33)

In the update method on the Observer, it might involve different types of activity. For example, it

may just display the text or if it may show a graphics repaint a user interface or it may do some

checking like threshold check and so on and these activities specific to the Observer need to be

taken care by the Observer itself. It will be a bad solution, if the model takes care of this activity,

a good solution should not do this, it just notifies the Observer and the Observer then takes care

of the changes that are necessary.

(Refer Slide Time: 25:22)

Now, let us look at the Java implementation of the Observer pattern. The subject maintains an

array list of IDs. As the Observers register, the subject updates the ArrayList adds the reference

of the Observer by keeping track them in the ArrayList it becomes easy to insert or attach or also

delete the Observers.

(Refer Slide Time: 26:02)

Now the subject, the Observer is an interface and we have update method defined there. The

subject is interface and we have addObserver, removeObserver, getState and setState. These are

the method prototypes defined in the interface.

(Refer Slide Time: 26:31)

And then we have concrete subject that implements the subject interface or if it is an abstract

class, the concrete subject is derived from the subject, it provides specific methods to different

subject, for example, getState may return subjectState and if it is an abstract class, it may have

method definitions. For example, for notify, it might have for all o in Observers o data update

and in the update we have the Observerstate is equal to subject.getState.

(Refer Slide Time: 27:13)

This is the concrete code. The Concrete Observer implements Observer and it defines the update

method. It keeps track of the state and this state should be synchronized with the state of the

model or the subject whenever the model changes it calls the update method on the Observer, it

calls the great state and it updates the state that it maintains.

The concrete subject it implements the subject. It keeps track of the Observers in an ArrayList

and it has its state, whenever there is a getState, it returns the state and the setsSate is called a

synchronously by other objects, other model objects or other interface objects who just sit the

state, unless the state changes it calls the notify Observers.

(Refer Slide Time: 28:28)

We have the oddObservers where it is added to the ArrayList, removeObserver removed from

the array list and then notify Observers, for all Observers in the ArrayList, it just calls ordered

update using iterator it traverses the ArrayList and calls the update method and all the elements

of the ArrayList. We are almost at the end of this session. We will stop here. We have a small

discussion left out on the Observer pattern. The Observer pattern is so popular that it is even

implemented in the Java language itself, we will just look at that and then we will conclude the

Observer pattern that is in the next session. Thank you.

