Object Oriented System Development using UML, Java and Patterns
Professor Rajib Mall
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 41
Introduction to GoF Patterns

Welcome to this session! In the last session we were discussing about the grasped pattern, the
indirection pattern, as you might have noticed over the last couple of sessions, we were
discussing about the grasp pattern. The central idea is to improve design by using some key
ideas. And most of the ideas deal with reducing coupling and increasing cohesion. Towards the
end of the last session, we were discussing about the indirection pattern.

The indirection pattern is applicable when the class has bad coupling. We noticed that a class has
bad coupling and redistribution of responsibility does not help, neither pure fabrication helps.
And we notice here that the coupling is between two concrete classes. As a result if an
independent class changes i.e., we have a new version of the independent class, then the
dependent class will also have to change. And that is precisely what is addressed by the
indirection pattern. The indirection pattern discusses how to avoid coupling between classes.

(Refer Slide Time: 02:17)

Problem: Indirection Pattern

* How to avoid direct coupling between classes?

* How to decouple objects so that low coupling is achieved
and changes become easy?

Solution:

* Depend on an interface class,

- So that objects are not directly coupled.

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES 65

And here the coupling is between two concrete objects, and that is what is causing the coupling
and the solution given by this pattern is dependent on an interface class and not on the concrete
class.

(Refer Slide Time: 02:22)

* Indirection Pattern violation:
— Server can change and requires changes to the client.

. ¥ <«<Interface>» Ind if‘eCﬁOﬂ
Compliant

ISeri'verlHSeimZ]

T -
NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES Y

The client directly invoking service of a server is not a good idea if in future it may so happened
that the server changes. We have new versions of the server, a new type of server. If there is
absolutely no chance that the server can change, it is a highly stable and it is not going to change.

Then this solution may be okay that the client directly invokes the server, but if the server class
IS going to change. We might have new servers and so on. Then this solution is not a good
solution. The indirection pattern says that we should not have the client class invoking directly
the concrete server class. We should invoke it through an interface, so this solution is indirection
pattern compliant. The client invokes the interface.

Methods, and therefore, even if we substitute a server 1 with a server 2 or server 3, as long as
they implement the interface, the client will not even need a recompilation. And it insulates the
client from changes and reduces coupling.

(Refer Slide Time: 03:56)
o ...

] Example: Naive Solutlonl Eiiiii! =
.Q—

void printEmpRoster(Employee[] emps) { mz«-m- K)_I
for (int i; i<emps.size(); i++) { Tf&%l“ _§1L bg:_g_tgg_ . w
if (emps[i].empType == FACULTY) s el el
printfFaculty((Faculty)emps[i]);)
dise i (enps[ll enpType =<STAFF) |Vt i #%
printStaff((Staff)emps[i]); Engineer??
else if (emps[i].empType == SECRETARY) /
printSecretary((Secretary)emps(i]); 4
}
}

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

Just to give an example, see here the employee roster is couple to a concrete employee class.
And the concrete employee class has several derived classes, faculty, staff, secretary etc. Now,
since it is a concrete class, the employee roster class, if it wants to print all the employees, then it
might have to do something like this. It finds out the number of employees and then for all
employees, it finds out the type of employee and then invokes the corresponding methods. And
this is not complaint to the indirection pattern. If we add new types of employees, then we need
to change the code of the employee roster. It is not a good solution, forces change of the client
class on a change of the server class.

(Refer Slide Time: 05:17)

REME NS ' Indirection

er

= SR o cdmwtwen) . Patte.rn
Solution

F-DW%LGﬁ
1
1

Faculty Staff Secretary Enéimr
st W) p—

void printEmpRoster(Employee[] emps) {
for (int i; i<emps.size(); i++) {
emps(i]. printInfo();

)

When Engineer is added, printEmpRoster() does not even need to recompile.
PrintEmpRoster() is open to extension, closed for modification,

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

We should have actually the derived classes implement the employee interface. And the
employee roster has an array of objects satisfying the employee interface. And in that case we do
not really invokes specific methods and the object, we just invoke the method and the interface.
And therefore, we can add more types of objects and then the code of the employee roster does
not change.

(Refer Slide Time: 06:04)

Indirection Advantages
* Low coupling

* Promotes reusability

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

The indirection pattern leads to low coupling and also improves reusability because of the low
coupling.

(Refer Slide Time: 06:13)

Problem: Law of Demeter

* How to avoid a class from interacting with

indirectly associated objects? @

) / &
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES s

Now let us look at the Law of Demeter pattern. The problem that the law of Demeter grasp
pattern. It addresses is how to avoid a class from interacting with classes with which it is not
directly associated. So, far we had seen that a class can invoke a method of a class with which it
is directly associated.

We had a class A which is associated with class B and then class A stores a reference to class B
and therefore class A can invoke a method on the B, object B class. But what if we have a C
class here which is also associated to B but not directly associated to C. Many times we write the
program where we get the reference from B for the C class, A class gets a reference of the C
class from the B class and invokes a method on C.

Here, it violates the principle that classes which are closely related or which are associated
should invoke methods on each other. Here a class which is not directly associated to another
class is invoking the method on C class by getting its ID indirectly. And this is what is the
violation of the law of Demeter pattern. Let us see the solution it offers. The problem is
identified that a class is trying to invoke method on a class with which it is not directly
associated but it is indirectly associated through some other class.

(Refer Slide Time: 08:36)

Problem: Law of Demeter

* How to avoid a class from interacting with

indirectly associated objects? |

_ Bill Item Itnggc
Solution: ' O i je{ v

* |f two classes have no other reason to be
directly aware of each other:

~Then the two classes should not directly interac
| a /— ‘
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES S

This is an example here. Here the bill class has many items, it is aggregation of many items.
Which have been purchased, the bill class is an aggregation of many items, and item is
associated with specific items specification. The item specification has method like find price.
And the item class has method like get item specification. And how many items purchased and
so on. Now the bill class has a responsibility to compute the total.

Now, here the bill class is associated with an item class and the item class is associated with item
specification when the bill class requests to get the item price. The item has how many numbers
purchased and then finds out the price from the item specification and computes the price for the
specific items and then it responds to the bill class.

(Refer Slide Time: 10:09)

’ -
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES s
|

But what if a class invokes methods on other classes with which it is not associated by getting
their 1Ds from the classes from which it is associated. For example, it may invoke a method on
this class here by first requesting this class to get the 1D and this class request this to get the ID.
The ID comes here and reaches this class and then it invokes a method on this class that will be
really bad design and violates the law of Demeter.

Collaborators

(Refer Slide Time: 10:50)

Law o! Demeter

* In a method, calls should only be made to the
methods of following objects:
— This object (or self)
— An object parameter of the method

— An object attribute of self

— An object created within the method

£ -
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES Y

The law of Demeter says in a method call, the call should be made to an object with any of the
following characteristics. Either it should be a self-call that is under this object or it can be a call

on an object that is a local variable of this class or an object parameter. It is a parameter pass to
the method, then it should invoke the method on the object that is passed as a parameter to the
method, or it can invoke a method of an attribute of the class.

An object may be an attribute of a class or maybe an object created within the method and so on.
So, these are the cases where the class is directly associated with another class and we are
invoking a method on the associated class. And this is alright is compliant with a law of Demeter
pattern.

(Refer Slide Time: 12:10)

A Hypothetical example

class A { class B {
private B b = new B(); Cc

}

public void m() { class C {

this.b.c.foo(); // High Sl
cotipliigs e public void foo() {

\ }
) } |

y " q /"
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES o

But let us look at this hypothetical example that we have this class A where we have this object
reference B an instance of B, and then the method M we are calling this.b.c.foo(). That means the
B has the C object visible and we are getting b.c.foo. Foo is the method of the C class and we are
invoking in the A class. A method of the C class by calling this.b.c.foo. Class A is not directly
associated with C but then in the class A, we are invoking a method of the C class by getting the
reference of the C class from the B class. It is a bad design, violates the law of Demeter pattern.

(Refer Slide Time: 13:28)

o
Law of Demeter: Example

Bill Item ItemSpec

computeTotal I getitemSpec findPrice

atny
(R .‘.n
. o L *
. . [}

L]
‘e o M, o
AT "ranant

Violation: item.getitemspec().findprice()

Bill Item ItemSpec

computeTotal it computeSubtotal findPrice

7 .-
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES o

Now, same is here, if in this bill, and item, and item spec, if we have this call in the bill class that
item.getltemSpec it get the items spec from the bill class. That is the idea of the items spec class
is obtained by the bill class by this, and then it calls the find price on the item spec reference. So,
it gets the reference of items spec through the item by calling the gate items spec.

And that invokes the find price. It is not a good idea, violates the law Demeter we should have
redistributed the responsibilities. The bill class has the responsibility compute total and then it
invokes the compute subtotal and the item and the item class computes the price subtotal price by
invoking find price on the item spec.

And just observe here that in the law of Demeter we had the problem of a class accessing method
of a class with which it is not directly associated. And we solved the problem by redistributing
the responsibility so that a class need not have to get the idea of another class and invoke a
method on that class, it is simple redistribution of the responsibilities.

(Refer Slide Time: 15:10)

o e
LoD Programming Style

* Inaclass PaperBoy,
- do not use customer.getWallet().getCash(due);

— rather use customer.getPayment(due); and in
customer.getPayment (due), use wallet.getCash(due)

* Benefit:
~ Easier analysis
¢ Tradeoff:
— More statements, but simpler statements
* Experiments show significantly improved maintainability.

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES 75

The Law of Demeter programming style, we should avoid using customer.getWallet.getCash.
We should rather redistribute the responsibility and have customer.getPayment. And in the
customer.getPayment, we use the get, we use the wallet.getCash. It reduces coupling, easier
analysis, number of statement maybe increase little bit, but then simplifies improves,
maintainability.

(Refer Slide Time: 15:57)

e
Law of Demeter: Final Analysis

* Reduces coupling between classes

* Adds a small amount of.overhead in
the form of indirect method calls

NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

The advantage of law of Demeter pattern reduces coupling but then if we want to see the
negative side of the pattern is maybe number of statements increases and so on. But then we have
to avoid by this pattern to get a good design which is maintainable and understandable.

(Refer Slide Time: 16:28)

— N
“The basic effect of applying this Law is the

creation of loosely coupled classes, whose
implementation secrets are encapsulated. Such
classes are fairly unencumbered, meaning that
to understand the working of one class, you
need not understand the details of many gther

classes.” Grady Booch fﬁz

In the words of Grady Booch the basic effect of applying the law of Demeter is that we get
loosely coupled classes whose implementation secrets are encapsulated. Such classes are fairly,
unencumbered meaning that to understand the workings of one class, you need not understand
the details of many other classes.

(Refer Slide Time: 16:56)

* Problem: Eolymorpglsm

— How to handle alternative operations based on

subtypes?
* Solution:

— When alternate behaviours are selected based
on the type of an object,

— Use polymorphic method call to select the
behaviour,

— Rather than using if statement to test the ty)

‘ A\
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES o

The last grasp pattern that we are discussing is the polymorphism pattern. This is the 9" grasp
pattern again, very intuitive pattern, simple idea, but highly useful. We already know about this
pattern from our programming. It handles the problem, that how to handle alternative operations

based on subtypes.

The subtypes have different operations. Compared to the base class, how do we handle this and
here we use polymorphic method call in the polymorphism pattern, we do not find the subtype
and invoke the methods, different methods, we use a polymorphic method call rather than a
switch statement based on the type and call the specific methods of different objects.

(Refer Slide Time: 18:04)
o
Polymorphism Pattern Advantage
* Easily extendible as compared to using
explicit selection logic

7 &
/8 ‘
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES -

We have already seen several polymorphism examples we will not spend time discussing this
pattern. It is very intuitive general-purpose, but this is one of the grasp pattern. The advantage of
this pattern, the solution is easily extendable and we get a better solution.

(Refer Slide Time: 18:35)

GoF Design Patterns

| 2! / —
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES o

Now let us look at the GoF patterns. The grasped patterns are general-purpose applicable in
almost every design. We do all the 9 grasp patterns are applicable. Even though the patterns are
slightly based on intuition rather than a specific class diagram solution or specific code. We will

look at the GoF patterns, these are possibly not as widely applicable as the grasp patterns, these
are applicable on specific situations.

But then these are more concrete patterns where we can describe the pattern in terms of specific
class diagram and when we have an opportunity to use this pattern solution, the GoF pattern
solution, it will tremendously improve the quality of the design. But then every GoF pattern we
may not have opportunity to use in every design that we attempt to solve.

(Refer Slide Time: 19:56)

* Good designs need to cope with change: What
— Underlying technologies change Problems do
— Business goals change GoF DPs
¢ v solve?

— User expectations change
* How to cope with change?

- Encapsulation

~ Inheritance S

— Polymorphism

NPTEL ONLINE
IIT KHARAGPUR ‘ CERTIFICATION COURSES

First let us understand what are the problems that the GoF design patterns are trying to solve. We
can answer this question by saying that the GoF patterns allow a design to cope up with change,
changes occur in almost every software solution, changes are universal to a software. There are
many-many reasons why software changes maybe the hardware changes, the underlying
technologies change, the business goals may change and we need to change the software. Maybe
the user expectations change.

Once the user get used to software, they think of new ways or new features which would help
them. There are many other reasons also. Why a software changes, but change is universal,
change of software, unless we have a good design. We will be overwhelmed by the changes. It
will become extremely complex to maintain, it will be extremely costly. And also it may create
lot of bugs. The main ways in which the GoF patterns solve this problem is that they use
encapsulation, inheritance and polymorphism.

If we give a very high level answer to the question that how do the GoF pattern solve the
problem of getting improved maintainability. In the face of a change is that the design solutions
are based on encapsulation, inheritance and polymorphism.

(Refer Slide Time: 22:06)

e
Types of GoF Patterns

* Creational patterns:
- How objects are created?
* Structural patterns:

— How classes or objects are composed into
larger groups?

* Behavioral patterns:

— How responsibility is distributed? A~
_ NPTEL ONLINE .
IIT KHARAGPUR ‘ CERTIFICATION COURSES o ‘

Now let us look at the specific patterns. There are 23 patterns but broadly we can classify the 23
patterns into creational patterns, structural patterns and behavioural patterns. The creational
patterns deal with how can objects get created. What is a good design when we need to create
objects? We will see there are various types of objects, various situations that we might have to
create, and there are several creational patterns in the GoF patterns. The second category of GoF
patterns is the structural patterns, you are try to address the question that how to get a larger
object, how to compose a set of objects into a larger object.

We will see that there are several structural patterns and they provide very elegant solutions in
getting these composite objects. The third category number of patterns exist under the
behavioural patterns. Here the question that is addressed is that what is the best way to assign
responsibility to classes under specific situations. In the grasp patterns we had also seen the
patterns were concerned about how the responsibility can be distributed.

But those were rather general solution here the GoF pattern, GoF behavioural patterns they
address specific problems, we will have a look at that as we discuss over the next couple of
sessions.

(Refer Slide Time: 23:59)
o Ul

* Structural Patterns GoF Pattern Taxonomy
~ Adapters, Bridges, Facades, and Proxies are variations of a single
theme:

* Reduce the coupling between two or more classes
* Introduce abstract classes to enable future extensions
* Encapsulate complex structures

* Behavioral Patterns
- Assignment of responsibilities between objects: Who does what?
~ Behaviorial patterns concern cohesion and coupling.

¢ Creational Patterns

~ The goal is to providé a simple abstraction for a complex instantiation
process.

~ Make the system independent from the way its objects are created,

composed and represented. 7

‘ - -
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES L

We look at few structural patterns, the adapter, bridge, facades and proxy. These are the
structural patterns we will discuss and these address the main problem that is how to reduce the
coupling between two classes. And we will see in all of these that we reduce the coupling in
these patterns of facade, bridge, adapter, proxy by creating abstract classes which help us to in
the future extension.

And also we encapsulate complex objects. Those are the key ideas of the structural pattern. And
then we have the behavioural patterns, how to assign responsibilities to different objects. And
these patterns, again, deal with cohesion and coupling, increased cohesion and lower coupling
that is how that is what is achieved by the behavioural patterns.

And the third category are the creational patterns. Here the goal is to provide a simple abstraction
of a complex instantiation process. Sometimes instantiating classes is complex and here will see
specific solutions about how to create those objects. We will make the system independent of the
way the objects are created that is how are the patterns. The factory pattern, the abstract factory,
factory method and so on these are some of the patterns that creational patterns.

(Refer Slide Time: 26:02)

Taxonomy of

m[—r wlm L GoF Patterns
’—"'{{“—‘ e - (23 Patterns)
e | [P] e | [o o
B e
[o] o 22
Lo | [P
o -

™ y ~
v s ‘
NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES o

The 23 patterns as we can roughly classify them as structural patterns, behavioural patterns and
creational patterns. The structural patterns, how the objects are structured. Decorator, bridge,
adapter, flyweight, facade, composite and proxy these are the ones we will examine. The
behavioural patterns, the number of them chain of responsibility, interpreter, observer iterator,
common template method, state, memento, strategy, visitor and mediator these are some of the
patterns that we will discuss.

And creational patterns, the builder pattern, factory method, prototype, singleton and abstract
factory these are the creational patterns we will discuss. We are almost at the end of this session
and in the next session we will start discussing the simplest among these, the facade pattern. We
will stop here and continue in the next session. Thank you.

