
Object-Oriented System Development using UML, JAVA and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 40

Pure Fabrication, Law of Demeter

Welcome to this session! In the last session we were discussing about the GRASP patterns.

Please remember that we had said that the GRASP patterns are extremely intuitive, very simple

patterns, but then very highly usable. Based on simple design ideas, which are widely applicable

in almost every design that we do. In contrast to the GoF patterns, which we will discuss shortly,

in the GRASP patterns we just give the general idea here. That is how the pattern is described.

But in GoF patterns, we discuss this in terms of specific class diagrams, generic solutions

described by specific class diagrams and code. But here, these are more general purpose and

intuitive. And many of these, we do not even have a sample class diagram. We had looked at a

couple of patterns, we had looked at the expert and creator pattern, and let us proceed from there.

(Refer Slide Time: 1:45)

The creator pattern, which we were discussing last time, the problem occurs in almost every

design that we attempt. The problem is when a new object is to be created, which class would be

responsible for creating the object. And the solution here, we have specific solution. There are a

few patterns in the GRASP pattern where we do not have very specific solution general ideas,

but here we have specific solution that if we want to create an instance of class C2, then we need

to give the responsibility to the class, which aggregates the objects of type C2.

So, if we have a member registered, which aggregates member records, then if we have to create

a member, it should be done by the member register. In any case, the member registered will

have to store in reference to the member object. And if it also creates the member object, that

will be very simple to create it and also store the ID of the member register. And similar is the

case when there is a composition, both aggregation and composition, we will have the

aggregator, the composite creating an instance of the component, this is the second rule in the

solution.

The third one is, if in case we have an object to be created, that is not aggregated into a larger

aggregate object, then we can create such an object by a class which works closely with this

subject that invokes methods or provides initialization data and so on. So, these two, if it is not

the aggregate object, just an isolated singleton, then we should create or the creation should be

the responsibility of a class, which either invokes a lot of methods in this class or it provides

initialization data for this object.

(Refer Slide Time: 5:07)

Now let us conclude our discussion on the create, the creator pattern. Here, the creator pattern

ensures that the coupling is the minimum that it can be and the responsibility is given such that it

is either given to the aggregator or the composite or to an object, which already has an

association with the object.

So the aggregator container has already coupled to that class. So due to the creation, it does not

become worse. Assigning the creation responsibility to the container aggregate is appropriate in

almost every solution that we work out. We will follow this, that the object creation

responsibility lies with the container or the aggregate and this results in lower coupling and

better design.

(Refer Slide Time: 6:14)

Now let us look at the controller pattern in the general solutions that we have discussed so far,

we intuitively use the controller pattern, but then which is based on the idea provided in the

GRASP pattern the specific pattern name is controller. The problem that the controller tries to

address is which class would be responsible for handling the actor requests. When a use case is

invoked by your actor, then a set of actions by various object take place.

But then there has to be a coordinator who orchestrates this action. Once the response comes or

the request comes from the user through the user interface, there has to be an object, which

knows, which methods of which classes in what sequence need to be invoked. And this sequence

is different for different user requests. The solution provided by this pattern is that we have to

have a separate controller object for each use case invocation.

The controller objects are short lived. The controller object is created as soon as request from the

user comes, it orchestrates the actions of other objects and at the end of the use case, the

controller object is the synthetic object. It does not correspond to any physical object, but then as

a rule we should have one controller for every use case.

We had been doing that implicitly without really knowing about this pattern. But then this

pattern is the origin of that idea, that for every use case, we need to have a controller which

knows the business rule for executing that use case. And once the user request comes, the

controller object is created and then it does all the necessary actions through requests to other

objects.

(Refer Slide Time: 9:04)

The controller object, is the synthetic object and in response to the actor message it carries out a

set of actions by requesting other objects. It is not a good idea not to have a controller. It will

really worsen the design, if we assign the responsibilities that the controller used to do to either

an entity class or interface class, that would be a bad idea. They will be un-cohesive and also it

will become very difficult to maintain.

Neither a user interface object nor the entity object should have the responsibility of the

controller. A controller has to be created for every use case. And as soon as there is a user

requests, the user interface object handles the user request and requests the controller to

coordinate the execution of the use case. And the coordinator takes up, orchestrates the actions of

other objects and finally returns the result to the user.

(Refer Slide Time: 10:43)

We had used this solution for this specific example of the tic-tac-toe. We had only one-use case

and one actor, and therefore we had one boundary. And the one-use case, as soon as the use case

was invoked on the boundary, then the boundary notified the controller. In this case, the

controller object already exists, but in some situations the controller object may get created.

But here the controller object exists is only a very simple problem. And then the controller object

knows the business logic and it coordinates the action and first request the board to check the

move validity. And then if it is invalid, it announces the invalid move through the boundary. It

checks whether the game is won or drawn by any chance, and that it requires the board to carry

that out.

And then it requests the board to play the move because that is how the use case works. The play

move controller embodies the business logic. And then once the move is played by the computer,

then it again requests the board to check the winner. And if there is a winner, our game is drawn,

it announces the result. And finally, it gets the board positions and displays the board through the

play move boundary.

(Refer Slide Time: 12:52)

The controller objects are very vital part of any solution. They do a lot of activity and especially

for complicated use cases, the controllers become very complex. They receive many system

events and they perform many actions. Unless we are careful, the controller may become

unmaintainable, may contain a lot of bugs and so on. The controller would finally have many

attributes, lot of methods and so on. And in these situations, even though at the start of the

design, we start with one controller per use case.

But if we find that the controller has become complex, handling many types of events, doing

many things by itself, then we need to refactor possibly by adding more controller, give some

responsibility of the controller to a secondary controller or if it is doing some specific activities,

not exactly the coordinating activities, but then working out certain things, some processing, then

maybe it can delegate the responsibility, you can have the control or delegate the responsibility

to some entity object.

(Refer Slide Time: 14:39)

Now let us look at the low coupling pattern. This is more intuitive and more common sense

rather than a specific pattern solution. Here the main problem addressed by this pattern is how to

support low dependency, low change impact, and increased reuse of a solution. In other words,

these problems in a design occur due to coupling between classes, high coupling between

classes.

And we know that coupling between classes is bad. It creates many problems, but just to

rephrase that if there is a coupling, high coupling between two classes, we cannot just change

one class in isolation. If we change one class, we also need to attend the other classes because

they are so highly coupled.

And also it is difficult to understand a class in isolation, we need to understand all the coupled

classes together that becomes extremely complex. And also reuse scope is very restricted

because you cannot just take out a class and reuse. If we want to reuse a class, we have to take all

the classes with which it is coupled. But if we find that design is a having high coupling, then

this pattern, low coupling pattern suggests that we should reassign the responsibilities so that the

coupling remains low.

(Refer Slide Time: 16:34)

Just to give an example, the controller here in the figure receives a request of make payment

from the user. So this is solution A and this is solution B as divided in the figure, we will see

which is better. In the solution A, once the controller receives the make payment request, it

receives the payment and creates a payment object. And then it passes on the payment object to

the sale with the maternity invocation add payment. And with this, the sale transaction stores the

payment object and also the details, the date on which paid and so on in the sale transaction

itself.

But an alternate solution here is that the controller on receiving make payment just invokes the

make payment on the sale. And it is the sale which creates the payment. And then it stores the

idea of the payment and the coupling between the controller and the payment is avoided in this

solution B. Of course, it is easy to see that the B solution has lower coupling, the overall design

has low coupling.

And this second alternative, the B leads to less coupling, avoids the association within the

controller and the payment, and only the sale and payment related. Just notice that we avoided

this coupling between controller and payment, by reassigning the responsibilities, instead of

controller creating the payment object, it is the sale which created the payment object. Thus tree

assign the responsibility and we find that the coupling has reduced.

(Refer Slide Time: 18:52)

The next pattern, the next GRASP pattern is the high cohesion pattern. If a design has low

cohesion, then there are many problems. It becomes very difficult to understand the design, very

hard to reuse anything from this design, very hard to maintain because you change something,

some other thing changes and the changes occur very frequently in this type of solution. And the

changes affect almost every class. In other words, having a design with high equation is very

important and this pattern highlights that aspect.

(Refer Slide Time: 19:49)

In this example, let us look at the responsibility of the controller. The controller creates payment,

and also it coordinates the action of other objects. And therefore the responsibility of the

controller is not cohesive. It is not only coordinating other objects, but also it is taking part in

some creation and so on. The controller class has less cohesion; we can just redistribute the

responsibilities such that the cohesiveness of the controller increases.

(Refer Slide Time: 20:33)

The controller just coordinates the other objects and then, the P is not there in the

makePayment(). This should not be there. It just says controller make sale or something, it

invokes here. And then the sale object creates the payment object and stores the ID here, and the

controller becomes more cohesive.

(Refer Slide Time: 21:06)

Now we need high cohesion to keep the complexity manageable. And each class performs a set

of cohesive tasks. And we so far achieved this by redistributing the responsibility similar was

with low coupling. Here to reduce the coupling in a design, we distributed the responsibilities,

but now we will look at a pattern where we again focus on reducing the coupling and increasing

the cohesion. But in the pattern that we are going to discuss, we do not really redistribute the

responsibility, but we create a new object which takes care of the non-cohesive responsibility of

your class, so that class becomes more cohesive.

(Refer Slide Time: 22:09)

And the name of the pattern is pure fabrication. When we find that a class is not cohesive, it has

responsibility unrelated to its main task. We know that it is a bad design. It leads to low cohesion

and also high coupling. And the pattern pure fabrication addresses how to improve the design.

Because many times we cannot redistribute the responsibility and increase cohesiveness or

reduce coupling because the class to which we assign this responsibility, that classmates will

become non-cohesive.

(Refer Slide Time: 22:58)

In these situations, the pure fabrication pattern suggests that we create an artificial class and we

assign some responsibilities, such that the non-cohesive becomes smaller cohesive and also the

artificial class that we created remains cohesive. This artificial class that we are creating here,

need not be identified from the problem domain there may not be anything in the problem

domain like that.

But while refining the design, we create these classes through pure fabrication with the idea to

reduce the overall coupling and increase the overall cohesion. Again, this is a simple pattern to

solve a specific problem of non-coercive classes and high coupling. When the redistribution of

responsibilities does not help, we create an artificial class.

(Refer Slide Time: 24:14)

If we find a low cohesive class, then we find out what are the methods that are not really the

central goal of the class, and we separate them out and assign it to some in winter class we

delegate it. And this invented class is the pure fabrication step. And now both the classes which

were having low cohesion as well as the inventor class become cohesive. It may be required that

we may have more than one inventor class to make the low cohesion class more cohesive, we

might need more than one inventor class in certain situations.

(Refer Slide Time: 25:09)

Now let us look at the next pattern called as the indirection pattern. This pattern again discusses

about handling direct coupling between classes. How to avoid coupling? That is the question it

addresses. In the overall design, how do we reduce the coupling? The solution proposed here is

that many time the coupling cannot be reduced by redistributing responsibility or creating a

fabricated class but by using an interface class.

The solution given by the indirection pattern is dependent on an interface, does not depend on a

concrete class. Remember that this is one of the basic principle we had discussed before we

discussed the patterns and the name of the principle was open-close principle, where we said that

high coupling can be avoided by depending on an interface and not a concrete class. And this

results in objects which are not directly coupled, the changes do not impact each other.

(Refer Slide Time: 26:40)

A client object, invoking the service directly on a concrete server object is not a good idea. It is a

violation of the indirection pattern. The coupling is bad here because the server can change, any

change in the server will affect the client. We should have the server as a interface and different

servers, they implement the interface.

In the first design if we change the server object, then the client object will also be changing.

And that is not a good idea, violates the indirection pattern. The main reason was that the client

and server had become coupled. To break the coupling between the client and the concrete server

classes, we use an interface class and the client invokes the methods on the interface class. And

this becomes indirection pattern complaint. We are almost at the end of this session, we will stop

here. And in the next session, we will complete the GRASP patterns, the remaining GRASP

patterns. And we will start discussing about the GoF patterns, the Gang of Four patterns. Thank

you.

