
Object-Oriented System Development using UML, JAVA and Patterns

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 37

Introduction to Design Patterns

Welcome to this session. In this session, we will start discussing about design patterns. So far,

we have looked at the basic design process using which, you get reasonable design and then we

had discussed about some principles using which you can get a better design and now we will

discuss about the design patterns and we will see that these are very important design elements,

good design solutions, which have been worked out by experts who have a lot of expertise in the

area of software design and if we know some of these patterns, we can reuse these in our design

to get a good design. Let us start discussing about the design patterns.

(Refer Slide Time: 01:15)

As we were discussing, the design patterns are essentially building blocks. If we know some of

these patterns, we can use this building blocks in our design and it helps us to arrive at a correct

and good design. We will see that if you can master some of the design patterns, you will be able

to spot them next time you do a design, you will be able to spot, where to use these design

patterns and you will be able to use this design patterns to arrive at a good design.

(Refer Slide Time: 02:11)

The design pattern area is inspired by the work of Christopher Alexander, way back in 1977. He

was not a computer scientist; he was an architect. But he had got this idea that to design a

building there are some reusable solutions which can be identified and then you can have a

language to compose these well-known design solutions to arrive at any design. That was the

idea he proposed. He wrote this book ‘A Pattern Language’ which listed more than 300 patterns

in designing buildings, architecture of different buildings.

According to him, each pattern describes a problem which occurs over and over again. Whenever

we want to build a new building, we will come across some parts which are common to other

buildings and if we have the core of the solution described in the form of a book, good solutions

described in the form of a book, we can make use of it. But then we do not really plug it in.

He captures that we do not plug in the pattern solution, saying that describes the core solution to

the problem in such a way that you can reuse the solution a million times over without ever

doing it the same way twice. Which means that the patterns provide a broad solution which we

adapt to the specific problem that we have. The design patterns for software is inspired by the

work of Christopher Alexander, on patterns for building.

(Refer Slide Time: 04:52)

But if we really think of it, every engineering discipline makes use of some patterns or other

even though they do not call it patterns. For example, civil engineering, mechanical engineering,

etc., they have handbooks. Even electronics engineering has handbooks of integrated circuits and

these integrated circuits for electronics engineers are reusable solutions. And if you know these

ICs, the behavior of these ICs, you can plug that in your electronic machine design. The

automobile designers do not design a new automobile from scratch. They make use of solutions

that have been tried out in other automobiles which have worked out well in other automobiles.

But what about software development? Should we use patterns for software development?

It turns out that software has many problems. For example, it is considered to be very expensive,

it has a lot of bugs, very difficult to change and many of these arise from the fact that software

unlike other engineering disciplines was largely developed from scratch. The design patterns are

an important mechanism to codify past knowledge, experience of expert developers and reuse

them in our solution. If we know these patterns, what the expert designers had used, we will see

that we can reuse and improve the quality of our design.

(Refer Slide Time: 07:10)

There are many types of patterns, which are in use for software development. The architectural

patterns, these provide the broad framework for development. These do not translate to code

actually. But they guide the detailed design, MVC layer, etc., these are architectural patterns. We

will look at the MVC pattern as we proceed in our discussion.

 The Gang of Four patterns are extremely popular, we will discuss the important Gang of Four

patterns: singleton observer etc. And then there are GUI patterns: Windows per task, disabled

irrelevant things, explorable interface etc., which we will not discuss. Database patterns:

decoupling pattern, resource pattern, cache pattern etc., which we will not discuss. Concurrency

patterns: double buffering, lock object, producer consumer, asynchronous processing, etc., which

we will also not discuss.

J2EE patterns: data access object, transfer object, etc., we will also not discuss this. The GRASP

patterns, this is the General Responsibility Assignment Patterns: low coupling, high cohesion,

controller, Law of Demeter, expert, creator, etc., we will discuss this. Turns out to be very simple

pattern, many of these appear to be more of common sense and since these are extremely simple,

intuitive and these are broad applicability.

Almost every design that you do can be guided by the GRASP patterns and therefore, we will

use and discuss the GRASP patterns first. This is extremely simple, intuitive, wide applicability

and therefore, we will discuss the GRASP pattern first and then we look at the GoF and the

architectural patterns and then, we also have anti-patterns. The anti-patterns are some design

solutions which appear to be good but later turn turned out to be liability. Initially when you try

to use them, you think that you have done a correct decision, but later will find that it makes the

design really bad. There are several examples of anti-patterns, God class, Singletonitis,

Basebean, etc., which we will also not discuss considering the limited hours that we have. We

will discuss first the GRASP patterns and then we will look at the GoF and we will look at the

MVC pattern out of the architectural patterns.

And this other patterns, some of them are specific, if you are doing database development, then

you might need the database patterns. Similarly, for concurrency if you are doing concurrent

programs, if you are doing J2EE, you are using J2EE, JAVA Enterprise Edition, then you will

need these patterns.

Similarly, for GUI development you will need GUI patterns, but these patterns which we are

going to discuss the GRASP pattern, GoF pattern and the MVC pattern have wide applicability

across different verticals. Once you learn them, you will have enough opportunity to use them in

your design development and also if you are trying to understand a solution worked out by

somebody you will see that they have made use of these patterns. So, not only in your design you

can use, but while understanding somebody’s design, you might see that they have made use of

these patterns.

(Refer Slide Time: 12:00)

We had just remarked that the design patterns originated from the work of Christopher

Alexander where he proposed a pattern language for buildings, 1977. These are some good

solutions to commonly occurring problems, which work in some context. In 1990s, the Gang of

Four: Gamma, Helm, Johnson and Vlissides compiled a catalogue of design patterns for general

software design and development and these have become extremely popular.

Even though it is near 30 years, but still the applicability of this is huge in your own solutions

that you work out, you will use them, you will see the existing solutions have made use of them

and not only that, some of the solutions that we are going to discuss have become part of the

programming languages. For example, while using JAVA, you might understand you might have

questions in your mind that’s why it is done that way. For example, why is that in a collection,

JAVA collection, the iterators are used, you have to create iterator object and then you use the

iterator object to iterate among the individual elements of the collection classes. But for array we

do not, we just traverse the array through without iterator, we use i = 0; i < n; i++. But then for

collection classes we use iterator objects, we will discuss about the iterator pattern and we will

see that this is straightaway used in the JAVA programming language and many of the GoF

patterns are actually implemented in the JAVA language and many other programming

languages. For example, the decorator pattern, these have been used in the JAVA IO.

You might wonder that why is JAVA IO is as it. But if you know the decorator pattern, you will

have the answer to the question, that the JAVA IO is as it is, because it makes use very heavily

the decorator pattern. Similarly, the composite pattern and so on. So, not only you can use the

design patterns to arrive at your solution, design solution, it will help you understand somebody

else design. But also, you will appreciate why JAVA programming language and other

programming languages do certain things in some way.

(Refer Slide Time: 15:41)

For the GoF patterns that we discuss, we will largely fall on the book on Gamma, Helm, Johnson

and Vlissides, this is the book which catalogs 23 different patterns. The number of hours that we

have now may not be sufficient to cover all 23 different patterns. But we will definitely be able

to cover 10 to 15 patterns. We will focus on the important patterns 10 to 15 important patterns

and we will also discuss the GRASP pattern, all the GRASP patterns which are the, GRASP is

the acronym for General Responsibility Assignment Software Patterns.

The GRASP patterns have been described in the book, applying UML and patterns by Craig

Larman. But, as we said, there are several other patterns which are also popular, we will not have

the opportunity to discuss them in this course, but we will encourage you to read them and get

familiar with them, because if you are working in some domain definitely if you know the

patterns, you will come up with better designs, you will be able to appreciate what is happening

in some program much better if you know about the patterns.

(Refer Slide Time: 17:36)

Now, how do patterns appear? Patterns typically have four elements depending on the specific

pattern we discuss; we try to give four elements to describe a pattern. One is of course, the

pattern name, every pattern has a name and this forms a vocabulary for the designer, if you know

some patterns like decorator, builder, Singleton, iterator etc., you can communicate with other

designers or somebody may look at your design and say that see, why do not you use a decorator

pattern or why do not you use a composite pattern here for this part of the design.

This helps to communicate ideas between different designers. Every pattern has a name and then

the problem it is trying to solve, that is the intent of the pattern, the context in which the problem

occurs and also some guidelines as to when to apply the pattern and the solution to the pattern

problem is given typically in the form of a UML model, mostly a class diagram and also skeletal

code and in our discussions we will discuss about JAVA code, but the solution can be given in

other programming languages as well.

But since we have to discuss using any one language, we will use JAVA language for discussing

the pattern solutions and UML model, which is the main part of the solution is typically given in

the form of a class diagram and also we will have the final description of the pattern that is

consequences of using this pattern. What are the tradeoffs made? What are the situations when

this pattern solution should not be used and so on?

(Refer Slide Time: 20:09)

The design patterns, they aim to codify good design. The good designers, they have used these

proposed and use it, we will see the wisdom they have in proposing the pattern solutions. Some

of the pattern solutions are more intuitive. Specifically, the GRASP patterns are more intuitive. If

we are experts in design, we will come across or will think of those patterns ourselves. But then

there are other patterns, where the pattern solutions are a bit surprising and elegant.

Given the problem, to a good designer, it will be hard for him to come up with those solutions,

which we will discuss, he might need hundreds of iterations, he will propose initially some

solution, refine it and so on and after hundreds of iterations, maybe he will come up something

like that. So, it will be a good idea to know those patterns, because you will save all those design

iterations even if you are a good designer.

The patterns distill and generalize the solution which very experienced developers have

proposed. It is useful for novices and experts alike as long as we understand the pattern, it will

help us to improve our design. Another very important thing is that we will be familiar with the

vocabulary and if you are working in a team environment or trying to communicate design ideas

to somebody, these names become very important, you might go to a company and there

somebody might say that, why do not you use the composite pattern in your design and that

would make sense if you know this patterns.

This form a common vocabulary among the designers and developers. It saves design iterations

as we are saying that sometimes you might come somewhere close to the solution given to the

design patterns, but then you need hundreds of design iterations and months or years of time to

arrive at such solution and therefore it saves time, iterations you come up straight with a good

solution. It helps improve the documentation, improves understandability of the design and also

the most important is that if you use the design patterns, your program becomes easily

maintainable. You can restructure, refactor and so on.

(Refer Slide Time: 23:25)

Now, what are the different patterns that exist in software development area? Broadly speaking,

there are three main types of patterns, the architectural patterns, the design patterns or the code

patterns, which are also called as idioms. In our discussions, we will focus on the design patterns.

But since we are discussing the patterns, we will also have an idea of what are architectural

patterns and code patterns.

(Refer Slide Time: 24:11)

The architectural patterns, these deal with the overall structure of the design, high level solutions

and the high-level solutions do not directly translate to code. The high-level solutions guide the

detailed design. The high-level solutions are the architectural patterns for high level solutions

and we will discuss the MVC pattern which is an architectural pattern.

(Refer Slide Time: 25:00)

MVC model view controller is a very popular MVC pattern, we will just look at that. The design

patterns are the ones which are provided a design solution and the design solution is broad, in

that you can apply it to many problems, these are general and broad, broad applicability so that

for a specific problem, you can just tailor it and apply it and after our discussions and after your

initial use of this, I am sure that you will get convinced that the design patterns help improve the

design.

Not only that, it provides a class diagram, but also it defines the interactions required among the

classes. The pattern solutions for design pattern are given in form of class diagrams, objects, the

roles of the classes, collaborations among classes, and also the skeletal JAVA code for every

GoF pattern, so that once you have the design, you can easily write the code and also if you look

at the code of a solution, you will be able to understand that what patterns the designer has used.

We are almost at the end of this session. We will stop here and continue in the next session.

Thank you.

