
Object Oriented System Development Using UML, JAVA and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 18

Polymorphism

Welcome to this session.

Over the last few sessions, we had looked at classes various relations between classes and how to

represent them on a UML diagram and with this opportunity we will just revisit some basic

concepts which are relevant to objects and classes and one of that is polymorphism.

(Refer Slide Time: 00:44)

We had started discussing in the last lecture about polymorphism.

It is an important object-oriented concept, literally poly is many and morphism is forms. In other

words, an object may occur in many forms and the same object behaves differently to the same

message. When the same operation is invoked on an object it behaves differently. so that’s the

implication of polymorphism in the context of object orientation that is the same message to the

same object can result in different actions.

There are basically two types of polymorphism that are used: one is the static and the other is

dynamic. In static polymorphism the behaviour is decided at the compile time. In static

polymorphism it’s defined behaviour for an object at the compile time whereas the dynamic

polymorphism it is define dynamically at the runtime.

(Refer Slide Time: 02:33)

Let’s, further explore this. The static binding is defined at the compile time. In the above slide,

there is a circle class and we the create method is called on the circle class depending on the

parameters of create. Different behaviour will be seen for the same operation create.

In the first case, a circle object will be created, in the second one, it is with a specific location

and with specific dimension and for the third one, not only a circle is created with specific

dimensions but also a specific fillType.

We can think of that the same create operation behaves differently for the same circle class. This

can be decided at the compile time by looking at the parameters of the create message. The other

name of this is static binding and method overloading. The create method is overloaded with 3

types of behaviour and we also called it as static binding because it is decided which method will

be invoked on the compiled time.

But in the dynamic binding that cannot occur we do not know which method will be invoked

until at the point when it is needed at the runtime.

(Refer Slide Time: 04:48)

In the static binding example, we just saw that there are three create method for the same create

operation and then it is decided at the compile time, which method will be invoked and the create

method is overloaded.

(Refer Slide Time: 05:20)

But in the case of dynamic binding, we need a class hierarchy for the dynamic binding to occur

and when we invoke a method on a base class then depending on the situation an appropriate

method of the object of the derived class is called. Let me just repeat that again.

In dynamic binding when a base class method is called the actual method that it is bound

depends on the runtime situation and a method of the derived class may get called. Here the

principles that are involved are an inheritance hierarchy. We need an inheritance hierarchy and if

we invoke a method of the library member depending on the runtime situation either the

corresponding method on the faculty, student or undergraduate, postgraduate et cetera may get

called (diagram shown in the above slide).

The other requirement for dynamic binding is that the same method must be overridden in the

derived classes and that’s how when we call a method on the base class the overridden method in

the derived classes may get called.

The other principle involved here is assignment to compatible types. Some assignments object

assignments or object substitutions are compatible that is one object can be substituted for

another object but some are incompatible they cannot be substituted for another object.

So, we will see these three basic principles for the dynamic binding. Let say, we define an array

of library members (in the above slide) and then we create various types of objects of type

faculty members, undergraduate members, post graduate members, staff members and so on.

Now, these objects are residing in that array. Basically the array or the array list is of the type

library member and now if we invoke an overridden method here, let say ‘issueBook’ is

overridden method of the library member and then the faculty can issue let say 10 books

undergraduate student can issue 5 book, post graduate 7 book, research let say 8 books. Now

depending on the object that is residing here in this array, the corresponding issue method will be

called. If it is a faculty object, which is residing in this array, then the faculty issue book will be

called even though the type of the array is library member. So, the basic principle here that even

though the array type is defined to be library member the specific method that will be called

depends on which object is residing in this array.

(Refer Slide Time: 09:48)

To get a better idea in this dynamic binding we need to understand, what is the principle of

substitutability which is also called as Liskov’s substitutability principle. Here the principle says

that “an object can be either assigned to or used in place of an object of its ancestor class, but not

vice versa.” That means a derived class object can be assigned or used that is substituted for an

object of its ancestor class, but an ancestor class object cannot be used for a derived object. We

can illustrate it here, that if B is a derived class of A then a is an object of class A, b is of class B

and then if we say a = b, then it is okay. So, we can substitute a derived class member for a base

class member. We can also call a parameter where ‘a’ is expected and we pass ‘b’ that’s also

okay. But when ‘b’ is expected and we pass a, that’s not okay. So that’s the principle of

substitutability. A derived class object is compatible with the base class object, but not vice

versa.

So, the compatible type says that, a derived class object is compatible with its base class object

but not vice versa.

(Refer Slide Time: 11:46)

The principle was proposed by Barbara Liskov. Let me repeat the principle in another way. If we

have an object of class A and there is an object of class B (a is an object of class A and b is an

object of class B) and b is a subtype of A then it is possible to use b for a. So, b is a subtype of a

and in that case, we can use B for A that is okay, but not a for b that is not okay. so that is the

Liskov substitution principle and defines the compatibility between objects.

(Refer Slide Time: 12:36)

In simple English we can say any subclass object should be usable in place of its parent class

object and this is intuitively clear. Inheritance a IS A relation, a derived class object is a type of

base Class object, but a base class object is not IS A derived class object.

(Refer Slide Time: 13:08)

So, here even though we have an array of library members, we don’t know if we call the issue

book method on an element of the library member array, which method will get called? It will be

decided dynamically at the runtime depending on the specific object that’s residing in that array.

(Refer Slide Time: 13:40)

Now, let’s look at an example of dynamic binding considering a shape class hierarchy (in the

above slide). Now, let say we have a display() method of the shape class and the display()

method is overridden in the various sub classes of shape. Shape is the base class and circle,

rectangle etc. are the derived class.

Now, we have an array of shapes and in that array will create various types of objects and let say

in a drawing package or something we want to keep track of various types of geometric objects

that are created and we keep track using the array of shapes.

Now, we can call the display method for all the elements of the shape array and we will see that

for different elements of the shape array different display methods are called depending on which

type of object is residing in the array.

(Refer Slide Time: 15:07)

So, this is the shape class hierarchy (in the above slide). A various types of shape circle, ellipse,

rectangle, square, cube, line etc. are there as sub class and we create different types of shapes in a

drawing package and we keep track of the drawing elements in the array of shapes. While

displaying, in a loop we called all the display method of all the elements of the shape array. And

then even though the same method is called on the shape array, but then the exact method will be

called depending on that moment which type of object is residing. So, this can only be known at

runtime and that’s why it is called as dynamic binding.

(Refer Slide Time: 16:06)

Let’s, look at the code example here (in the above slide). We have this traditional code (left side

code) and here we have an array of shape (Shape s[1000]) and then we check the shape type

(using ‘if’ condition) and then depending on the shape type we call the corresponding draw

method of that shape (draw_circle(), draw_rectangle()). Not only that this code is cumbersome,

but it is less maintainable because each time we add a shape we need to change the code.

But look at this code where we have dynamic binding (right side code). Here, we have again

1000 shapes and we create the shapes and store in the array and for each element of the array we

just call the draw method (s[i].draw()) and the corresponding draw will be called. So, the code is

not only concise crisp but also is more maintainable. We can add more shapes but no need to

change the code.

(Refer Slide Time: 17:19)

This is a more concrete example of the same class hierarchy (in the above slide). We have the

base class shape which has the draw method. We have the circle class extending shape, line

extending shape, Rectangle extending shape. All these are the derived classes and each one has a

different drawing implementation. So, we can say that the draw is overridden, the base class

draw is overridden in the derived classes. In the main method we create three shapes: we create a

circle, line, and rectangle and then we just call the draw method for each of these objects residing

in the shape array and we will see that the corresponding shape method of the object gets called

and this is essentially the principle of dynamic binding.

(Refer Slide Time: 18:18)

So, far we have been looking at the class diagrams and some very basic concepts like

polymorphism, packages and so on. Now, let’s look at a behavioural diagram which is state

machine diagram.

We will see that the objects sometimes have significant number of states and we need to capture

the state behaviour of the objects. We need to model that and we will see that if we are able to

model the state behaviour of the objects, we can mechanically generate code and many case tools

actually automatically generate code based on the state machine diagrams.

(Refer Slide Time: 19:17)

Let’s, first start with some very basic concepts. If we look at object-oriented implementation of a

object-oriented program, we see that during runtime there are various types of objects that are

created. We can roughly classify these objects into two types: one is the stateless objects and the

other is stateful objects. The stateless objects are also called as state independent objects or

modeless objects. On the other hand, the stateful objects are called a state dependent objects or

modal objects. The state independent or modeless object do not have significant state behaviour,

there is only a single state in which the object exists. And it keeps on remaining in that state.

Whereas the stateful objects there are several states, maybe 3, 5, 10 depending on the complexity

of the state behaviour. There will be many states and at any time during the execution the object

will be in different states and the behaviour of the object will depend on which state it is.

In a state independent object to all the messages that are invoked on object, it always responds

the same way on the other hand in a state dependent or stateful object, once the methods are

called, then the response of the object is different depending on the state in which the object is

present.

We use a state machine diagram to model the different states of an object and how it transits

among the states. Here is a model of a keyboard (in the above slide), if we press the caps lock

key then all the letters that we type are transmitted to the computer in capital letter.

But if we have caps unlock, then whatever we type the small case letters are transmitted to the

computer. So, we can say that the keyboard exists in two states, one is in caps lock state and the

other is the default state or the caps unlocked state. By default, it is in caps unlock and if we

press the caps lock key then it goes to the caps lock and whatever key we transmit in the caps

lock state these are transmitted to the computer in capital.

(Refer Slide Time: 23:13)

Now, we will get some exposure in object-oriented programming, I am sure that before doing

this course you have written several programs in Java or C++. Can you recollect any object

which has stateful that is they have different states and behave differently depending on the state

you need there? It will be really nice if you can recollect any object which you think is stateful,

then we will compare with the answer that I gave you.

There are many objects which are stateful, one is a lift controller. A lift when it is going up it is

in the upstate and when it is in going up any requests in the up direction is accepted, from a

higher floor who wants to go further up that request will be accepted but if somebody trying to

go down will not be accepted it will be ignored by the lift. Only when it is going down the down

request will be accepted.

And the lift maybe in stand idle at that time any request either up or down will be accepted. A

game software controller can be set to novice mode, moderate mode or advanced mode. Let say

chess game and we can set it to be novice, moderate, advanced and so on and the way the

responses the game to a move by the player will be different depending on the state of the game.

In a graphical user interface, a menu maybe active and we can invoke that menu, if the state is

inactive, we cannot invoke that. A ‘robo’ controller control a robot. The movement command

given to the robo controller let say move straight, but then in front there is an obstacle then the

robot will not move. But for the same movement if the path is clear it will make move and if it is

a difficult terrain, then the movement may be different. So, we are trying to press the same move

command in robo controller and depending on the state the robo behaves differently.

We can see here that the most of the examples that we gave are with respect to controllers and as

we proceed with this course, we will see that the controllers are present almost in every program

that we write.

The programs that we will write as part of this course, we will see that there will be a plenty of

controller classes and all the controller classes happened to be stateful objects. So, the controller

classes is one of the important example of stateful classes.

(Refer Slide Time: 27:08)

But there are some other examples, like in a client-server system, servers are stateless but clients

are stateful. Devices is another example of stateful and mutators also example of stateful objects.

We are almost at the end of this lecture; we will stop here and we will continue from this point.

Thank you.

