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Hi, So, welcome back to our lectures on up we are hitting certain programming. So we have been 

discussing this SIMT model of computation. And based on that, how the different threads that 

are launched via kernell on a GPU kids can use. And as we have seen that threads, get packeted 

in the form of 32 parallel threads running executing together as what we own as warps and this 

warps essentially getting mapped to the circular process of course. 

 

And the GPUs multi, I mean multi level scheduler is responsible for scheduling this warps into 

the processor architecture as we shall see.  
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And so coming to warp execution, as we have discussed earlier, that for this specific GPU, the 

SIMD warp scheduler selects, one of the active  24 warps and accordingly. This warp is 

executed. And, of course, at a time they are many many parallel warps that are active which also 

depends on the size of the SM And the size of the and the number of SMs in the system and all 

that. So, how does we warp really execute.  

 



So, for the example system that we have taken here since one warp will have 32 parallel threads 

is and being executing. And there are essentially 8 SP course. So, an issued warp will execute 

over 4 processor cycles. And of course, there will be the SP cores feature comprising the interior 

ALU, and, and also the floating point units. And also there are the special function units. 

 

Which are separate from the SPcores, and they are going to execute those the corresponding 

instructions independently. So, coming to the GPUs, ISA 
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Like, what are the different kinds of instructions that are supported by the execution model of a 

GPU. So as we know that this is to be defined by the instruction set architecture of the graphics 

processing unit, And the instructions that architecture specifies what are the different classes of 

instructions that are going to be supported. So it happens that there is support for a lot of floating 

point operations, apart from standard integer and bit level operations.  

 

Also, specific operations like transcendental operations are supported. And there are also specific 

instructions which control the flow of execution into the GPU is some topic that we will get into 

in more detail later on. Of course there are also instructions for doing memory load and store of 

data points. Now, what are really the floating point and integer operations that get executed of 

these are pretty similar to standard processor instructions. 

 



With respect to addition, multiplication. There are also fused multiply add units. So you have one 

instruction which will do the multiply add. There is instructions for performing. I mean, 

minimum, as well as maximum value extraction comparison instructions and set predicate 

instruction. So there is something also which is very important with this the two instructions flow 

control, that is also something we touch upon in more detail later on.  

 

And also there are instructions which do the conversion between integer and floating point 

numbers. And as we have discussed earlier, that we have inside the GPU Apart from this scalar 

process we also have the special function units which take care of executing the transcendent and 

functions. That means functions for which you do not have a nice codes on, but there are some. I 

mean, this our standard numerical algorithms. 

 

We could actually implement their approximate versions, for example. Cosine Transform, sine , 

binary exponential binary logarithm as we know that in terms of algebraic expressions that exact 

values  will equal to compute an infinite series of terms. But inside the standard ecosystem, the 

way they are implemented is you have a numerical algorithm which does an approximate 

computation which is good enough.  

 

In terms of the number of pieces that are provided to the  represent the value. So, you have 

transcendental constant instructions for all the trigonometric functions, then binary exponential 

binary logarithm computing reciprocal as well as reciprocal square root. With respect to bitwise 

operators, you have the standard shift left shift right logical operations, and also move 

instructions. You can also do control flow execution, you can actually have instructions. 

 

Of course you need them in any standard barrier by saying you need instructions which will 

manage the control flow that is managing branches managing function calls, managing returns 

the, trap, and also something known as barrier synchronization that is very useful for handling 

parallel threads in, in any kind of parallel programming interface, it's may be GPU or its may be  

MPI or something else. 
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So what about the register file, like we know that in any processor you have a register file which 

contains the registers the registers called the data, which immediately needs to the ALUs, and so 

that for doing any kind of a new operation. The operands  have to be present in the register, 

otherwise they have to be brought from the main memory to the cache. So, every SM has a large 

vector register file.  

 

So it's like a vector processor is registers are divided logically across the SIMD lanes, that is a 

SPs. So as we have seen earlier, in our small discussion on Vector processors you have Vector 

registers, that means a register which can hold and array of values, the same type. So similarly 

like that. I also have a big register file inside on SM, and the register certainly divided logically 

across the assembly lines.  

 

So that SPs, kind of, present the individuals scalar computer elements of a large vector. And 

then, what are the values of the registers, that is something that keeps on getting across 

architecture families with the older GPU architecture we had smaller numbers. But with the 

newer GPU architectures definitely the number of registers part of them, keep on increasing we 

will have some figures on this later on. 
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Now coming to the second architectural example so we move from Tesla, to the fermi family of 

NVIDIA architectures, which provided some new facilities in terms of processing. So coming to 

an example. We decided to Fermi  GTS 480 GPU. These are representative example of the Fermi 

family one of the earlier examples. It has got 16 SMs. Together they can process, 512 CUDA 

cores.  

 

So you have these 512 CUDA cores inside the system itself segments each of them has got 32 of 

these CUDA cores, 32 scalar process. And you have got this 32 768 number of 32 bit registers 

divided logically across the executing threads. Inside each SM. So, I have each SM is comprising 

this 32 SPs. And these many 32 bit registers. So, if I look at the system from the perspective of a 

single SIMD thread. It is limited to no more than 64 registers.  

 

A warp has access to 64 times 32 registers, of course inside a warp, I will have 32 such threads. 

Since each thread has got an access to 64 registers. When warp is executing inside a GPU. It has 

got access to this overall number of registers. Of course, each of these registers a 32 bit. So, just 

to get to them values again, overall I have this many number of registers for a single warp. I have 

access to this 64 cross 32 registers, each of which are 32 bit.  

 

However, they can hold different kinds of data types right? So I can use the 32 bit registers to 

hold 32 bit data. Also, if I am doing operations on double precision, floating point operations. I 



need to 64 bit data values. So we might consider this kind of double precision floating point 

operations, then I would start saying that  warp has access to 32 vector registers. And each of 

these vector registers have 32 elements.  

 

And each of these elements have 64 bit wide, so essentially this figure of 64 cross 32  registers 

which are 632 bit changes to 32 vector registers each of them are 32 wide. So, each of them is 

32, the width is  32. So, essentially 32 cross 32 registers which are 64 bit while the same register 

file can operate in both the modes. 
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So this is an example picture of our Fermi family SM. So, this is a streaming multiprocessor 

example from fermi family. As we can see, the cores are all, the SP course can be seen here. So, 

as we say that each SM has 32 SPs. In total there are 16 SMs, we are having a deeper look into 

one of the SMs right? So inside one SM, I have this kind of 32 SPs. I have got this 32 SPs. And 

there are 16 of the load store units.  

 

We do memory load and store via the cache to the DRAM. So each SM has got the 16 load store 

units, essentially, is contributes to 16 SIMD lanes. And each lane has got these 2048 number of 

registers. So essentially you divide these many registers across this 16 SIMD lanes. So you will 

laned up with 2048 registers for SIMD lane. Each lane has got one low storage unit loading data 

points on the, on the DRAM.  



 

Now, if I look at to the other functional units that are present in the SM, then I have got 4 special 

function units as we can see that they are not directly integrated into this pipeline. So I can see 

that if I can have an alternate loop into this figure from a horizontal way, then I can start saying 

that okay for every load/store unit. I have got 2 cores there. That is like an one SIMD lane. I have 

got 16 SIMD lanes.  

 

These issues are sitting there, they are not directly integrated into each of these lives, but of 

course for operations. They are available. And I can have in the best case 4 possible special 

function operations going on. If I take a closer look into each of the scalar processors. So there is 

the figure we have here. So in this bigger as you can see that you have got inside it so there is the 

dispatcher, there is a result queue. 

 

And inside this CUDA coree that is the scalar processor. You have one floating point unit, and 

one integer ALU. So these operations are supported by these units, you can have an integer 

operation. You can also have a floating point operation here inside the core. The ALU also 

support standard Boolean, shift ,move, compare convert kind of values. Extracting specific bit 

fields from an input value in a register and all that.  

 

So that is about the computation part in the SM right? So I have these many compute cores. 

Inside the SM. Just to summarize, there are total 16 SMs each SM was got 32 SPs, there are 16 

load/ storage units, 16 SIMD lanes and this is a over all register file inside the SM. And this 

register file gets divided across the SIMD lanes. So, each lane gets 2048 number of registers. 

And if I start looking at the point from the execution view of a warp. 

 

Then the warp has access to these many  registers which are all 32 bit. I mean, it has got access 

to this many registers out of this total. But they can also be configured in a different way and I 

can say that it also that says to 32 vector registers. Each holding 32 elements which are 64 bit 

wide. 
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Now coming to the memory hierarchy of the SM. So as you can see, here I have the organization 

of the compute units. Also, there is something called a shared memory, but it's also written as an 

L1 cache with an oblique, and the amount of it available is 64 kilobytes. So what is the shared 

memory. So, in a memory hierarchy. The memory is organized from the programming point of 

view into the following parts. So there is a local memory par-thread.  

 

So this is the private temporary data, which is booked par-thread in the external DRAM outside 

this setup SMs I have one big DRAM here, to which is things are connected through a 

interconnect. For computation by each thread in the SPs. We have a specific set of registers 

available as we have discussed that there is a specific set of registers available for warp inside, 

the warp I have gotten a state of history cores that are engaged.  

 

But of course, those registers may not be enough to hold all the computations values, the 

intermediate values that are getting computed in a par-thread This is, in case a thread is very 

computation heavy, and it is generating lots of intermediate data, which needs to be stored 

somewhere, and the register files allocated set of registers for the thread and not enough, then 

definitely you need to have space in the DRAM, which can be used right, for the storage of data.  

 

So this is known as the local memory per-thread, essentially insight is in every thread, will have 

access to some segment of the external DRAM, definitely uses the DRAM the access is slow. So 



this will happen, the storage or the access to the local memory of the thread will happen when it 

is doing some local computation and the values cannot be cannot be stored in the register there 

are too many things to store for the registers available to this thread. 

 

Then we have shared memory for low latency access to data shared by threads in the same SM. 

So what is this shared memory. So as we can see that the register file debuggers divided in a bar 

warp basis but suppose the thread across the warp needs to collaborate among each other. They 

want to collaborate on the computation that is going on. For that, you need something which is 

available here, was the shared memory.  

 

So this is the memory segment, which is transparency visible to all the cores. So, somebody's 

updating some data in this memory segment is visible to other computing thread in any of the 

other cores. So, the good thing is the shared memory sitting inside the SM. So, the access of the 

shared memory is very fast. If I compare it with the access of that DRAM. So, if multiple 

threads, executing across cores you want to do some collaborative computation. 

 

The good thing for them to do, would have the certain data points defined as shared memory type 

data and access them. Of course, register the fastest access, but next to be access time for the 

shared memory. So, the shared memory is useful for low latency access to data shared by threads 

inside the same SM. And then of course you may need a lot of data for the threads to warp on, 

which is basically sitting in the global memory. 

 

And it is being brought into the system that is inside the SMs hierarchy of shared memory L1 

cache and the registers as and when required. So this global memory for data is shared by all 

threads of a computing application. And this is again implemented in the external DRAM chip of 

the GPU. So. So just to summarize, you have the global memory available for a CUDA program, 

defined as a space in the external DRAM chip of the for par-thread. 

 

If there is something that has to be stored beyond the register, because the registers is already 

loaded. And then you also have some access to the local memory per-thread, which is basically 

prior to the thread, and that the physical location for that would also be the DRAM. So, we can 



understand what is the difference between DRAM segment which is a global memory and a 

DRAM segment is a local memory. 

 

The global memory is again shared by all threads so any update to any data point on the global 

memory is visible to all threads. But the local memory is also something that is implemented in 

the external DRAM, but it is defined in a per-thread basis. So any update done by a specific 

thread is going to be used by that third only it's not going to be visible to the other fits. So, 

essentially, how this memory model for CUDA programs is organized. 

 

You have a very high level DRAM. There is a physical location where you have a global 

memory that is defined that is shared by all the threads, and that is to be used for collaborating 

computation across SMs, because as you can see, the shared memory is also sitting inside SMs, 

and this way I have 16 more SMs, and all day sales update hulu's finally to the global memory. 

So, if I have to do some collaborative computation across SMs threads. 

 

Across SMs in that memory update has to happen to the global memory segment that is defined 

in the DRAM. Again, I will repeat this part that local memory is also something defining in the 

DRAM, but is define in a part-thread basis it is used in a part-thread basis used for computation 

and holding of temporary values for that specific thread. And this is, this is true for every thread 

individually.  

 

So for holding the temporary data, apart from the register by segment which is assigned to that 

thread. They have some segment in the local memory, which is again physically located in the 

external DRAM. For faster computations, and collaboration among thread, inside in SM, you 

have this shared memory, which is allowing you low latency access. If I compare the access time 

with this the to the global memory. 

 

And this helps for sharing data by threads inside the same SM. So sharing data by threads across 

SM has to happen to global memory, sharing data by thread aross SM has to happen to shared 

memory because it provides a low latency access for each thread in the SM the fastest access of 

data happens to the part of register assigned to it but if it needs more place for holding temporary 



data, it has to access some segments. Inside the DRAM which is defined as that thread local 

memory.  
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If we look into the specific memory hierarchy Starting from this Fermi family of GPUs. Then 

there is something fascinating about the shared memory organization here. So if I look at the 

computation from the point of view of a thread. If I look at the memory organization from the 

computation of a view of a thread, then the nearest to me is the register file, not showing the 

bigger.  

 

The next level is a shared memory or Ll cache  then I have L2 cache. And then I have the 

DRAM. So, the good thing about shared memories as if you can look into the figure, it's inside 

SM. So, if I have to do the computation inside the SM two different course updating values and 

exchanging values across the themselves without crossing the boundary of the SM, then there is 

no point in updating value to the global memory and then going to the other SM. Rather, it can 

be done to the shared memory right? As we have discussed already. 

 

So that is what it enables it enables the threads to cooperate there to facilitate the use of on chip 

data and reduce of off chip traffic by off chip traffic we mean that access to things that are 

outside the GPU chip that is the DRAM. So thats outside the processor. Now, each SM will have 



64kb of on chip memory. So this memory is configurable, when I mean this on chip memory I 

mean this shared memory and L1 cache apart so this is 64 kb.  

 

As you can see its written here. Since we wrote this already right is shared memory, oblique L1 

cache that isn't is this. It can be configured in two ways it can be configured as 48 kilobyte of 

shared memory with 16 kilobyte of L1 cache. Or, alternatively, it can also be configured as 16 

kilobyte of shared memory with 48 kilobyte of L1 cache. So both things are possible. It depends 

on what really you want to do. 

 

If you need to have more amount of collaborative execution than you actually across the inside 

the same across the different CUDA cores inside the SM you may like to have more amount of 

shared memory. 
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So, taking a more distributed loop into this memory hierarchy. So, earlier whatever we have been 

discussing was specific to one SM like this one, this is the picture of the architecture block inside 

the SM. If you have a loop into the memory hierarchy. From the point of view of the entire GPU 

chip, you have all these SMs arranged here, right? And they are connected to this interconnect 

network.  

 



Each of the SMs contained inside them that shared memory or the L1 caches. The register files, 

the CUDA cores, which are functional units everything right? And you have all the systems here. 

So, this L1 data cache, or shared memory is private to the SMs, along with some other memory 

segments feature. The readonly texture and constant cache. So, these are specific cache types, 

which will also be located inside the SM. 

 

So, the reason is, you can always have specific variables which will you, which your threads will 

be operating on in read only mode right? So you can put them in the constant cache inside the 

SM for faster access. And then you have the L2 cache for the L1 cache is private to the SMs. The 

next level of cache is not private to SMs, but L2 cache is unified for all the SMs. So, essentially, 

you can think that this L2 cache, its a unified thing.  

 

So you have a common L2 cache to which all SMs can also collaborate. The access to the 

DRAM has to be done through memory controller from L2 cache, because of course if you do 

not get the memory element from the L1 you will access L2. If you if the L2 cache also give 

some miss then the memory controller will reference the DRAM. So the L2 is unified across all 

the SMs, and the access to DRAM is actually bank.  

 

By bank, what we mean is that DRAM is not organized as a big junk of our physical memory, 

but is divided into multiple vents of memory, and all these banks can be accessed in parallel. So 

that is why we are seeing that 6 high bandwidth DRAM channels are present. So we saw here 6 

possible access places for the DRAM. And we will of course come back to this topic of shared 

memory, bank conflicts. And how DRAM banks are access and all that later on.  

 

So, if I compare this idea of CPUs and GPU architectures. It can be quickly observed that GPUs 

have a larger register file, much larger is to file with respect to CPU. The reason is very simple. 

GPUs have got more number of cores inside them. By core I mean the parallel processing 

elements, the basic computes the CUDA cores. And they do simple operations, but a lot of them 

together in parallel. 

 



For sustaining that you need a very large register file to  provide them with a request requisite 

number of operants. However, if I compare the L1, and l2 cache size. They are much smaller. Of 

course the L1 cache is divided across, physically divided across a SMs while the L2 cache is 

unified. But they are much smaller. But again, they provide much higher bandwidth. They 

provide much higher bandwidth if I compare with CPUs 
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Coming to the instruction set target of the NVIDIA compilers. So, we have already discuss what 

are the instructions that are supported in general by GPU. But what exact instructions are going 

to be executed on the GPU. So that is specific set of instructions which are going to be executed 

in the GPU keeps on changing optimizing, and possibly being refined by suppliers like NVIDIA. 

So they do a different possible implement a different possible approach in terms of defining the 

instructions set, If I compare with CPUs. 

 

So what they do is from the programmers point of view, the define an instruction set, which is 

the target of all NVIDIA compilers. And this is something that doesn't change. So, this is 

essentially an abstraction of the hardware instruction set, because we change in CPU heavily, the 

hardware instruction set goes to modification. But the NVIDIA compiler, or if somebody 

developed some other compiler. 

 



They will, need not always upgrade themselves or conform to the ever changing actual hardware 

instruction set. But they just need to emit code in a well defined instruction set, known as PTX, 

PTX full form is Parallel Thread Execution. So, this is the abstract instruction set that is defined 

for generating code. And if you are trying to write a compiler for the GPU system, you like to 

generate code, which is in the PTX format will go into details later on today.  

 

I mean, in his lecture, we are just introducing this idea of PTX. But then the question is finally it 

needs to be translated to hardware instructions. Well, PTX code gets translated to this instruction 

while its is actually loaded into the GPU. So when the compiler emit the code, you emit PTX 

code. Compiler optimizations. They are also defined on the PTX code. 
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The PTX code format is something like this. So you have a opcode, then you have a destination 

operand is followed by three possible source of operands. The source operands can be 32 bit or 

64 bit registers are also a constant value. There is something interesting about this instructions, 

each instruction can be predicted by a one week predicate register. Which can be set by a specific 

instruction called a predicate instruction.  

 

So this is a facility that helps to decide whether or not to execute an instruction. Based on some 

specific conditional that will be there in the program. So this is something that handles that plays 

a big role in handling branches in GPUs. And that is something that is a that is very important 



because we can understand you are trying to execute multiple instructions in parallel. So, how 

realy you excecute a branch, depends. 

 

Because if you are executing a warp, you have 32 threads progressing together in lockstep by 

lockstep I mean that you have. I mean, if I go to that older architecture example that we just kept. 

So there we defined a warp execution inside 4 clock cycles. Each clock cycle. Since because 

there are eight of the SP cores in that example, but of course you can understand things new 

things keep on changing the evolution of GPU architectures.  

 

So, from a programmers point of view,  it is a good way to think that,  warp, all the instructions 

that are executing in a warp are executing exactly in a lockstep. So, all the threads execute the 

same instruction together. Next, they execute the next instruction together like that. when these 

threads face a branch instruction, it may so happen that some of the  the threads, they are thread 

ids satisfy the branch construction.  

 

For all the thread ids do not satisfy the branch constitute construction. So when that happens, 

then the GPU is to handle, which of the strip should make progress and which of the church 

should not make progress. And this is something that is decided by the set P says predicate 

instruction we will get into that later. Thank you. So we will end with this for the time being. 

And in the next lecture, we introduce something more in this regard. 

 


