
GPU Architectures and Programming 

Prof. Soumyajit Dey 

Department of Computer Science and Engineering 

Indian Institute of Science Education and Research-Kharagpur 

 

Lecture-62 

Efficient Neural Network Training/Inferencing (Contd.) 

 

Hi, welcome back to the lecture series on GPU architectures and programming. So, if you recall, 

we have been discussing different possible GEMM optimizations. For example, we started with 

the basic GEMM, right. The first optimization was just pushing in our normal tiling concepts, 

right. So, how the idea of tiling helps in matrix multiplication when done with shared memory 

based tiles. 

(Refer Slide Time: 00:51) 

 

But then we also saw that leads to a small amount of compute with respect to the loads and that 

can be further improved. 

(Refer Slide Time: 01:00) 



 

So, all that we did was we coarsened the threats. 

(Refer Slide Time: 01:05) 

 

And in that way, we could actually reduce the ratio of compute, I mean, we could actually reduce 

the ratio of load with respect to the computes. And to say in other words, we actually were able 

to increase the amount of compute per load, right, by doing the coarsening optimization. 

(Refer Slide Time: 01:22) 



 

And then we exploited the wider loading GEMMs that are available in NVIDIA GPUs because 

they do not support vector operations like multiply and add, which is vectorized. But they 

actually provide you with wider load and store instructions. 

(Refer Slide Time: 01:36) 

 

So we made good use of this float8 kind of data types here for kind of using our tiles with I 

mean, using the wider load instructions for filling in the tiles. That is how we will put it. 

(Refer Slide Time: 01:51) 



 

But that also required us to go through this complex switching of values, which we have already 

explained in the last lecture right, how to support the wider data types and all that. 

(Refer Slide Time: 02:03) 

 

But the next thing that it comes is called what we call as rectangular tiles. So we will just do a 

brief recap like why that is required. So in the rectangular tiles part if you remember; that K40 

GPUs have got this 48KB of shared memory, right. Whereas for these tiles that we have defined, 

they were 32 cross 32 tiles, 2 of them, each storing 4 bytes of data. So it was overall 8KB. So 

that is like the basic reason that why you want to have a rectangular tile right. 

 



Now well, what do we do with that. So let us just browse through this idea of rectangular tiles 

once again. So all that the idea was pointing to 2 is that since we have a large amount of shared 

memory, so we can increase the tile size and that is what we did right. So we increase the tile 

size from 32 cross 32 to tiles of size 64 right. 

(Refer Slide Time: 03:03) 

 

So that is what we discussed that well will increase the rectangular tile size. And but then, there 

was also this optimization that since we are supporting bigger tiles, why not also store the matrix 

B in a transpose way, because then you have the advantage of load a memory access coalescing 

while loading from the global memory. But then we also figured out that well that leads to a 

problem with the shared stores. For that we needed to flip the indices here. So that the shared 

memory stores are done in a nice way, so that they can be fetched again properly. 

(Refer Slide Time: 03:50) 



 

But that also led to a problem that when I am now looking for loading from the shared memory, 

they are all falling in the same band. So, in order to reduce this band conflict, we added the data 

here, right. So, that is a short summary of how rectangular tiles really helping us, right. 

(Refer Slide Time: 04:00) 

 

So these are the changes like you do global loads from B where B is pre transposed. And then 

you do shared store through the matrix B sub in such a way that the load is optimized here. And 

the way you optimize the load is you paired the data types here with 2 elements, because the in 

each bank you have memory width of 64 bits for the loads. So you paired with 2 positions here. 

And that gives you a huge advantage over the baseline of implementations. 

(Refer Slide Time: 04:38) 



 

Now, let us just start with the next optimization, which is what we call as 2D register blocking. 

So, just to remember that in case of rectangular tiles, we had to do I mean the transpose and then 

store properly in the shared memory, while doing the untransformed from the local memory right 

and then we had to paired the data here. So, the other 3 things which we needed to do 

simultaneously. 

 

Now again coming to the register blocking part well we have earlier when discussing the 

optimizations where we are kind of doing the coarsening I would say in 1 dimension right 

because if you remember while we are doing threat coarsening, we are coarsening we are 

computing for multiple data points in 1 dimension, when we are supporting wider loads again we 

are doing a similar course ending in the other dimension, right. 

 

So, the general idea could be that you increase the work per thread in both the row and column 

dimensions right. So, this is what we call as 2D register blocking. So, essentially we are doing 

the register loads in such a way that it is essentially similar to 2D tiling that we discussed for the 

shared memory based optimization for matrix multiplication. But this is done at a different level. 

So that means just let us just replicate the idea that you are doing a shared 2D I mean share 2D 

load of data from the global memory to the shared memory. 

 



Let us just replicate the idea and load data in a similar way from the shared memory to the global 

memory right. So that is what we will be calling as 2D register blocking. So it is similar to 2D 

tiling, but it is done at a different memory level. In the earlier case, it was from the global 

memory to the shared memory, in this case is from the shared memory to the registers, right. 

 

So, what really helps you the optimization is that it helps to reduce the shared memory traffic I 

mean, just like using the earlier optimization of normal standard tiling, what we are really doing 

where we are really optimizing the global memory off chip traffic? So in this case, you are using 

the same idea between shared memory and the register file to reduce the shared memory traffic. 

(Refer Slide Time: 07:02) 

 

So let us just have a look at how it works. So we will just use our usual definitions, the tile size 

in dimension M, remember that we are multiplying M cross K and K cross M matrices here, right 

tile size in dimension N and then tile size in dimension K, this is what we set. And then if you 

remember earlier, we are defining work per thread while doing coarsening we will just use the 

same idea in the in terms of work per thread in dimension M and work per thread in dimension N 

right. 

 

So, if we are trying to coarsen the work in both these dimensions, then we will have a reduced 

tile size in both the dimensions right. So, these are tiles which will be based on the shared 

memory for loading data to the registers, right. So then the reduced tile size in dimension N 



would be just like the tile size in dimension M divided by the amount of work we are now giving 

to a single thread in dimension M, right. 

 

So it is just tile size in dimension M divided by the work per thread that we are now trying to 

define in the same dimension. So that gives me these RTSM. Similarly, I can have an RTSN, 

right. So that is essentially nothing but TSN by the work per thread that I have defined in that 

dimension M right. So, once this is done, then I can define that will what is the amount of data 

load that each thread has to do for A and B matrices. 

 

In our case, in this simplistic case, we will consider for 2 of them that will be same here. So 

LPTA is nothing but the overall tile size for the M cross K matrix divided by the reduced tile size 

in the dimension M multiplied by the reduce tile size in the dimension N right. So that gives you 

the loads per thread for A. Similarly what happens to loads per thread for B, well you consider 

the original tile size. 

 

Tile size in dimension K and tile size in dimension N for the matrix B and you divide it by the 

reduced tile size in the dimensions, right. So, essentially you are dividing the original tile size by 

the reduced tile size and that is giving you the amount of loads that a thread has to do for A and 

similarly, the amount of load a thread has to do for B right. So, since this TSM and TSN are 

considered to be equal in our case. 

 

So, for us the loads per thread for the matrix A LPTA and LPTB the loads per thread for matrix 

B they are going to be same right. So, with this we can then go and define the blocks and the 

greed and the blocks right. So, they can be as just like this that so I am defining dividing M by 

TSM N by TSN. That would be my dim3 definition of blocks and similarly for threads right. 

(Refer Slide Time: 09:59) 



 

So, what will be my basic steps when I am going to execute this 2D register blocking. So, of 

course, one thing is to be sure that I am increasing the work per thread further by using this 

optimization for identifying the threads we use for each thread will initiate this following local 

variables. So let us say I define this tidm and tidn just for noting down the local threat IDs with 

respect to the columns and the rows right. 

 

And of course, the maximum value each of them can have will be this TSM divided by WPTM 

and similarly the TSN divided by the WPTN like we have defined earlier okay. And similarly we 

can compute the offsets which will be used soon like exactly from which block the thread shall 

start working to figure that out you multiply this tile size in the dimension M with the block ID 

for the thread. 

 

And similarly, the offset in the dimension N can be found by the tile size in dimension N 

multiplied by the block ID in the Y dimension, right. So, the next thing that comes is well, we 

have to define the memory to fit a tile for A as well as a tile for B, right. So, how do you really 

do it. Well, we already have this TSKs and TSMs defined. So that gives me the Asub as TSK 

TSM, and B sub the other memory as TSN, TSK + 2 if you remember our earlier idea of the 

padding that we have to introduce her, right. 

 



So that is actually getting carried over here. So the next thing that of course, you have to do is 

well, you have to initialize a 2D accumulation register here. And earlier, it was a 1D array, but 

now since it is a 2D register blocking so you are initializing these acc in a 2D array with all 0s 

for the float values, right. 

(Refer Slide Time: 12:02) 

 

But then comes what is the overall operation that you have to do for per thread for every tile. So, 

this is your number of tiles right. So, overall the K and you divided by the TSK, that is your tile 

size in the K dimension. So, that is the total number of tiles you have in that K dimension over 

which you have to hop right. So, this is the tile loading loop, the outer loop of the multiplications 

right. 

 

So, this gives you the number of tiles and inside this you have the same older steps to be done for 

this newer setting that you have to load 1 tile of A and 1 tile of B into the shared memory and 

then you have to loop over the values of a single tile and perform the computation just like 

earlier. Only thing is you have more work per thread right now, and at the end of the entire 

computation when all these load and compute for all the tiles is done you just write back the 

values result matrix C right. 

(Refer Slide Time: 12:58) 



 

So here comes the load part. So how do you really load. So, of course, one may start thinking 

that well, I have got this 2D data to load, but we will do it in our single loop here. The way we 

are doing it is, as you can see, for each position, I am just iterating from 0 to LPTA, right, the 

load per thread value. So this is the amount of data I am supposed to load and since LPTA is 

equal to LPTB. 

 

So just by iterating, over this 2 I can do the loading for the both the Asub and Bsub matrices. 

And from where am I supposed to load. Well, we are representing all the threads in the first and 

second dimension by one global variable ID. So let us understand I mean, what is the problem 

here. So we have already defined the work per thread. But now, I mean, ideally want to start 

thinking that well, this would be a 2D loading. 

 

So why do not I have a cascade of 2 loops for doing the loading, instead of that what we are 

doing is we also know that how many loads one thread is supposed to do, right. So let us just 

iterate one loop from 0 to that maximum number of loads that one thread is supposed to do, and 

figure out a global position for each trade, you figure out a global position in the array from 

where you are supposed to do the load. 

 

So that essentially we are trying to figure out by computing an ID, right. And then, so that 

position, I can just figure out because I know the M, and what is the offset inside it, and then I 



can go to the corresponding row, right. So by computing these values, I can just figure out from 

where to load, right. And then the other thing I will do is, I will figure out the ID of the thread by 

using this local computation, you can just easily check that how this ID is getting computed. 

 

And if you just do a percentile and a divided operation, you can just find out what is row and 

column index in Asub and Bsub where you are supposed to put the value, right mind that you are 

Asub and Bsub have the opposite things because for B you are having the transpose matrix, right. 

So is just like the previous case here, we would say yeah, so, these are always as this rows, same 

thing. 

 

So, in using this loop, you are just identifying here through this access expression from which 

location in the matrix A you are doing the load from which location in the matrix B you are 

doing the load. And by doing this computation of ID with this formula, you can just check it up, 

because you are just figuring out which number to load and then you are multiplying it by this 

reduced tile size to go to that corresponding location right. 

 

And then you are just doing an offset with the tid which you are already computed here, right. So 

with this, you are able to go to the locations of both I mean of the A and B matrix both, right. So, 

again, we will just repeat that here, we compute the tile index, right. And then you are just 

multiplying the tile index with the M and N, because these are the corresponding dimensions to 

look for in the A and B matrix right, mind that B is transposed here. 

 

So, these are the dimensions to look for in the A and B matrix. And then from A and B, you are 

doing our load to Asub and Bsub just like we have discussed earlier. So, the variable ID that we 

have which we have computed here, you are just then doing these 2 operations to figure out what 

is the row and column value where to load right. 

(Refer Slide Time: 16:52) 



 

Once the loading is done, you are going to run this computational loop where you are actually 

going to perform the multiplications and for that, what you do is this is your outer loop, then for 

inside the outer loop, first notice that the outer loop is definitely going to run for K values right 

up to TSK, right. That is the tile size in K, right. And then, because again, the next time we load 

and again, we are going to run these for TSK. 

 

And that is just like how you do computation with tiles as we all know. So then, the thing that 

you do is you cache the values of b sub in the registers. Now that is an important step. So 

observe what is going on. So, you have got this value of Bsub now you are going to load them in 

this array Breg. Now, why is this important. Observe that Bsub is shared, right. So it is in the 

shared memory, but where is Breg. 

 

Breg is a local array, which means this will be located in the register, right. So you are now 

going to cache this value of Bsub that you have the consecutive values, right. So, you are just 

computing these column index right for the same K, you are just computing this column index 

and getting the value from Bsub and you are loading it into Breg right. So, in that way, with this 

loop, you are loading all the values of Bsub that you require for the multiplication in Breg. 

 

Well, what is the next step. So, this actually caches all the required values for Bsub and then now 

you get to the computation. So, now, for the real multiplication computation, you have this for 



loop where you are running it for this wm 0 to this work per thread for M, right. And here, what 

you are going to do is well first you compute the row index from using this tidm. And this wm 

values and that gives you the exact value of from Asub, which is going to be multiplied. 

 

Well, so, as you can see, your essentially caching a single value of Asub into the register and that 

is the value that is going to be multiplied with all the values of Breg continuously and stored in 

the accumulator right for the corresponding value. So, this we are not repeating because as you 

can understand this follows the similar pattern like our earlier optimizations right, you need all 

the consecutive B values, but you need this single A value right. 

 

That is why you have already cached these B values, right. So, as you can see, this is all the work 

for one thread, right. So, the real multiplication by the thread is really happening here, right. And 

since you have 2 loops, so, in that way, you are getting a coarsen set of values done, right. So, if 

we just repeat inside C so, this is your C you have got these tiles defined for 1 tile. Well, these 

are the reduced tile sizes I am drawing for one thread, you are now making that thread do a 2D 

computation. 

 

So, this loop is actually iterated over the number of computations that is to be done. Right work 

per thread in M. And then in one direction of course, right. Of course you have this A and B. So, 

this outer loop is going over the work per thread in direction M and the inner loop is going over 

the work per thread direction N but for a single position of this direction M you load 1 Areg 

value right and for that you are going to use these Breg values right to sequence of Breg values. 

 

So, in every outer iteration what you are doing is you are caching a single value right and then in 

the inner iteration, you are going to use this Areg value with this array of Breg values, right. So, 

what is important to notice that will every thread has got parser activity, for every thread for each 

tile, you have got some parser activity. So if you see this is pastured activity for a thread any one 

time, right. 

 

So for that single tile, what you are really doing is you are first figuring out well for this tile, 

what are the values I am supposed to load and you are. So, this is where the threads loading of 



values from the shared memory to the registers are getting done, right. So, that is why we have it 

like cache the values of Bsub in registers right. So, here, inside this compute loop, there is some 

amount of memory activity going on. 

 

The memory activity to be more specific is for loading values from the shared memory to the 

registers. And this is what we would say is the cracks of the optimization. Like earlier, we have 

already seen this optimization right which is like loading from global mem to share. And next, 

the current optimization is when you load from shared to a 2D register right. So, that is what you 

do. So, as you can see inside this loop for one value of K you are first making a sequence of 

loads in from this Bsub right. 

 

So, you are making a sequence of loads from these Bsub to here, right, and then so that is the 

activity for this thread. And similarly, for the other threads also, they are all making their own 

corresponding caching of values of Bsub for this loop, right. And for this thread, after it has got 

these values cached, it goes to perform the real computation, right. So where what it does is 

inside this for loop, well, first it performs the computation of the row index. 

 

Then it uses the row index to compute well, what value is to be loaded into Areg for the 

correspondent Asub shared memory, right. For that it has got this index, right, which row and K 

is getting computed. And then here, it is keeping it constant, and multiplying it continuously with 

these Breg values, right. So it is multiplying this Areg continuously with Breg values and it is 

iterated here over this. 

 

Well once this is done again it will load from the outer loop, it will again, load another 

corresponding value of from Asub to Areg. And then again in the inner loop, it will multiply this 

Areg value with a sequence of values from Breg and that is how it will work. 

(Refer Slide Time: 25:22) 



 

So, with this we have the computation done in 2D. And once this is done, the next thing is 

loading it back to a global memory. So for that, well, first you have to figure out what is a 

location where it has to be loaded. And again, as you can see, since this will be this is a 2D 

activity, like this thread is going to again, load back a 2D array of values right for 1 thread. So 

what it does, again, you have a cascade of 2 loops. 

 

And it figures out that what is the global position where it has to do the load. So that is figured 

out by fast computing a global row from the outer loop. And then in each iteration of the inner 

loop, it figures out a global column value. And this combination of global column and global row 

is used to figure out a position in the C matrix where this value from acc has to be written back, 

right. So this is how the final values get stored in C. 

(Refer Slide Time: 26:31) 



 

So this is our idea of how these different possible optimizations can be performed for doing the 

GEMM computation. So just to recall, all we do here is that we are using our earlier 

optimizations together, but doing it in a 2 dimensional way, by coarsening the threats in both 

dimensions. Well here we have not used the wider load idea, there is also something you need to 

understand, right. 

 

But the important thing is for you to figure out this, that how the computes work like as I am 

giving a 2D amount of computation to be done for each thread. That is why now I have a cascade 

of loops here for doing all those computations and also the loading of the data. And as I recall 

that there are 2 levels of loading. Here you have a load going on from the global to the shared 

memory. And then in your earlier compute loop, you now have an amount of load first done 

from the share to the registers. 

 

 And these 2 steps we are now kind of differentiating here, and then I am using the cached values 

to multiply with I mean I am caching a single value of Areg and multiplying it with a sequence 

of values of Breg, and so on so forth through this loop cascade, right. And then again, I am 

storing it back using another loop cascade. So right now I have more work per thread. And these 

are good optimization in the sense that in modern GPUs you have big I mean sufficiently big 

shared memories and so, if you can just choose a proper tile size and a suitable thread coarsening 

factor in the 2 dimension. 



 

Then this can really help okay, so the summary here would be that GEMM is the most 

computationally heavy kernel which is used for fully connected layers, and also the convolution 

layers of neural network and the optimized implementations that we have discussed so far. They 

focus on that training phase of course, and if we are speaking about the other phase of neural 

network work like inferencing. 

 

So that refers only to a forward pass over a trained neural network. And so in general, these 

optimizations we have discussed will likely be more important for HPC kind of process where 

you because you are primarily going to do large neural network training in such deep as such 

kind of large, I mean significantly powerful computers, whereas inferencing is the more popular 

workload for embedded GPUs. 

 

Because in an embedded GPU, you can have an inferencing engine for doing a lot of stuff, like 

recognizing somebody's image from a camera, or doing some object detection, or maybe live 

streaming of video and from that doing a face detection and all that those are inferencing kind of 

works. So they also require different kinds of optimizations, which you can figure out. 

(Refer Slide Time: 29:41) 

 

So, with this maybe we will like to close this current lecture. Thank you. 

 


