
GPU Architectures and Programming 

Prof. Soumyajit Dey 

Department of Computer Science and Engineering 

Indian Institute of Science Education and Research-Kharagpur 

 

Lecture-60 

Efficient Neural Network Training/Inferencing (Contd.) 

 

Hi, welcome back to the lecture series on GPU architectures and programming. 

(Refer Slide Time: 00:27) 

 

So we will just revise once again our previous coverage. So if you remember we have been 

talking about how to build the dependency graph for the CNN style computation. And in general, 

we also visited how the math for backpropagation works. And what we could see is that in 

general, if we have a cascade of layers, and we are trying to compute some error term for a 

specific layer. 

 

So in general, the way we compute it is that is basically to multi the error term that I figure out 

the delta 2 for the previous layer, multiplied by the weight of the previous layer, and the gradient 

of the activation function in the given layer, right. And so, and this in general would continue 

and this gives me the error term, and you multiply that error term with the previous layers, or 

whatever is the input with respect to that current layer. 

 



For example, if it is the input layer, then you multiply the currently computed error term with the 

input matrix. In general, if it is any intermediate layer, then the error term gets multiplied with 

the previous layers, output activation, right. 

(Refer Slide Time: 01:49) 

 

So with that, what we figured out was that if we look forward, that how the pipeline computes 

the different indices that we discussed earlier, and we thought that let there be the following 

kernels in the kernel k f i, which computes the forward the activation output A i of some ith 

layer, some kernel kb 1 i, which computes the error term right. Now, one important thing if you 

notice in this picture for the error term we are writing it delta L minus i minus 1. 

 

The reason is we are considering L number of layers and if you remember the error terms are 

computed backward right. So, the last one would be for you put i equal to L here, so, that would 

give you delta 1, there is the error term for the last layer that you get. So, that is why for every 

kernel in some higher layer kb 1 i it computes delta L minus i minus 1 as per our indexing for 

this picture right. 

 

And we use this to compute the overall loss that is del J del W i right and the that is computed by 

so that something that we are representing by dW i here. 

(Refer Slide Time: 03:12) 



 

And that, of course, is basically the computation of the error term delta, delta multiplied by the 

previous output a previous activation input, which would be this. 
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In general, this A transpose times delta 1, this kind of a computation. So, that is what is done by 

this kb 2 type kernel here. So, if you look into this picture in the forward pass, so, we have I am 

just reintroducing this picture again after our last lecture, because there is some linkage here, 

which we need to mention that as you can see for every layer layers, I am introducing this index, 

right. 

 

I mean, although the kernel is k, which is always computing the activations A i’s right for the ith 

layer, I call it kf i for the next layer it is kf I mean kf i plus 1, and so on and so forth right. 

Basically is the same kernel, which is getting called multiple times, right. For computing output 

of different layers, right. And in the backward computation, we have 2 types of kernels here, one 

type of kernel for computing the error term right, which is always outputting, the delta terms as 

you can see. 

 

So I am outputting the delta terms for every kb 1 type Kernel, I am outputting the delta terms. 

And then for these delta terms are used by these kb 2 type kernels to give me the differential loss, 

right, the differential weight. So essentially, though, is basically multiplying these deltas with the 

A transposes right. So that is why the dependency is from the delta. There is a dependency input 

dependency and they also a dependency from this A L minus 1’s right. 

 



So, they are giving me this I mean the dW i terms which I will add to these W's and update them 

and again run the forward propagation and that will be again followed by the backpropagation 

right. 

(Refer Slide Time: 05:25) 

 

So, pretty simple, if we now progress with this, this was our task graph view. So essentially, as 

we discussed that this part is our set of kernels, which are doing the entire computation. But it 

keeps on repeating, right, the computation is a sequence, forward pass, then last computation, 

then backward pass, right, and then again, it repeats. Again, the backward pass outputs are used 

to update weights, and then you are going to run the forward pass and then the backward pass 

one, so forth, right. 

(Refer Slide Time: 05:56) 



 

So with this, what we figured is the most important computation we will be requiring is the 

GEMM computations for this kind of neural network trainings. 

(Refer Slide Time: 06:06) 

 

So, overall our observation had been that for doing this GEMM computation will be recurring to 

use our parallel programs and the major scientific libraries that are available for example plus 

and the modern times CU plus they actually use these Fortran based ideas that for doing the 

matrix computation, you assume that data is in a column major format. Now, what would that 

really mean. Let us understand. 

 



So, like we discussed that whenever we are talking about column major format, one of obvious 

thing is that considered the matrix in every IJth term in your mathematical matrix becomes a in I 

mean can be accessed with a JI index. Consider that this data is stored in the column major 

format right and as you can see, that is what is happening. So, you are multiplying 2 matrices of 

dimensions M cross K with the mean. 

 

So, this is for A and for B the dimension is K cross N you are multiplying them. So, you see the 

access expressions are a bit different right. So, we are more habituated to writing that will I will 

have a loop where I have this K iterating right for a fixed M, right. And so, essentially the way 

we do it is I will have M times some small m which is the dimension right. So, if I am so M 

terms small m plus K, multiplied by B. 

 

And the index for B would be, of course, the column index. So K times some capital K plus N, 

something like that. But as you can see that it is opposite here. The reason is this column major 

format, like we already discussed. So one simple way to think would be that we will just 

consider the data entries that whatever is your actual IJth mathematical data in your computation, 

it can be accessed with the once you flip the indices with J and I, right. 

(Refer Slide Time: 08:38) 

 

But just to have a more clear picture, considered the real arrangement of the data, like as we 

know that we are going to now have that in memory, you have everything stored in a consecutive 



block. And for our usual C or similar style languages, we have row measure format, that means 

you have a row followed by the second row right in that way, but now, since we are considering 

column major format, what does that really mean. 

 

So considered some matrix A right. So, you have the usual these are normal mathematical matrix 

we are trying to write right and you have the data of the row 1 row 2and all that, but when you 

are storing it you are not storing it in a C style arrangement in the memory, but rather you are 

storing it into column major format. So, if I just write the data arrangement here, so, you are 

going to store the first column here in the first row right. 

 

So, that means you are essentially storing A let me use the 0 indexes here, because finally I will 

be writing a C program to access them a 00. Then the second element in the column right, so, A 

10 like that and finally, you will be having A N minus 1 is capital M the dimension right, M 

cross K we are considering. So, M minus 1 for the 0th column, right, we move on to the next. So, 

A for the second column right. 

 

So, that was a 00. So, now, so if I just write it you have a 00 here, I have a M minus 10 here, the 

next would be so, a 01 and in this column what do you all have we have a M minus 1 comma 1, 

right. So a 01 and it all ends with a M minus 11, right. So that is how it is. So now, when you are 

really trying to access the data, as you can see that you are going here for what element, you are 

going for some MKth element, right. 

 

So what would be the location for the MKth element. That is the problem, right. So as you can 

see, for the MKth element for getting into the MKth element here, what do I really need to do. 

Well, I have to make capital N number of skips over this data, right. So I want some access here. 

MK right. This is sorry, this is capital M right. So I have to shift to the Kth column. That means I 

have to skip through this K times M, number of elements here, right. 

 

And then I get to the column where I have the MKth element, right. So for that, as you can see, I 

have to multiply k with capital M, that takes me to that position where I have it right in that 

column. Now the elements of that column are located like this, right. So I have a 0 kth element, a 



1 kth element like that up to a M kth element. So that is why the shift by M, right. So I am just 

trying to make it clear that well, it is very simple that you just flip by a J. 

 

The indexes, but physical in terms of the memory storage, this is what it would mean right. You 

have to multiply k with capital M since you are shifting over K half of columns here, right. 
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So with that, this would be our normal code for the, I mean J multiplication, where I am also 

assuming that we will do some tiling based optimization. Now, of course, we are familiar with 

tiling based optimizations for matrix multiplication. So, this is basically that code only. So what 

do we really do. We use matrix multiplication kernel. We compute the rows and columns which 

are the, for the thread Idx and thread Idy right. 

 

And we use them to figure out the, what is the global row and column value. So, in general, if 

you recall, our idea of doing the normal matrix multiplication, so every thread we are going to 

launch a block of threads, every thread block will try to compute the elements for a tile, right, 

inside a tile, or in the corresponding view for a block of threads, every thread is trying to 

compute one element in the tile right, And what was the way that we progress. 

(Refer Slide Time: 14:16) 



 

So if you just remember, let me just redraw the picture again. So let us say this is your B, this is 

your A and you are trying to produce an output matrix C here, right. If you break to tiles, the tiles 

indirectly define the way you are going to launch the thread blocks. So for one block of threads 

you are corresponding to computation of one tile. So every thread the thread which is going to 

compute this element will I mean, it will have to do a computation of elements here. 

 

I mean, it has to essentially multiply the elements here with the elements here, right. And how 

does it really do it. Well, it does it, I mean by coordinating with other threads that means for this, 

the thread is first responsible for loading this data, it will be using 2 shared memory locations 

right. It will be using 2 shared memory locations. So, it will use this shared memory location to 

load these data points. 

 

It will use this inside this shared memory, it will be loading these data points, all the other 

threads in the block will be loading the other thread data points. Once that is done, this thread is 

supposed to now if you look back into the code, so this is the position where all those loadings 

will be done right by all the threads collaboratively. Now once yeah. So, here as you can see, so, 

we are in the first iteration of this loop. 

 

All the threads have loaded the first data of the first tile right. And then they go to this second 

loop here in this loop what is going on. Now, this thread is going to compute a multiplication of 



the data, which has been loaded by all threads here with the data that has been loaded by the 

every thread here, right. So this multiplied by this, so there gives you the partial sum. In the next 

iteration of the outer loop. 

 

Again, all the threads in the block, we load the data for the intermediate this block here, and then 

this block here. And then again, every thread will perform the corresponding activities so that 

now after bit ends events, the thread, which is here, has performed a partial sum of data up to this 

much and after this much right here, and it continues like this. So that was our idea of tiling. So 

just a small recall here, right. 

 

So if you remember, so this is the position where one thread is loading 2 data points into the 

shared memory is Asub and Bsub, right. And it is waiting here for every other thread in the same 

tile to do the load. And then is falling into this loop, where it is progressing with all the data in 

that row for Asub and in that column of Bsub to do the computation of the partial sum, right. 

And once everything is done, like once the thing is done for all the tiles, which will update into 

the global memory, right. 

 

So that is how things were going on for normal tiling. No. Again, if you remember that since is 

the column major formatting. So as you can see the access expression here for Asub and Bsub is 

just reverse to what we have been seeing earlier right. So that is why, by tradition, k comes first, 

right. Because it is in the columns now, right. So it is Asub k row instead of Asub row k. And 

similarly, Bsub column k instead of Bsub k column, right, is just the opposite from earlier. 

 

Now, earlier, if you remember, we were happy with the result of this kind of tiling based 

operation, right, this kind of matrix multiplication kernel with this kind of tiling. We were happy 

with that, right. But now we will try to see whether this can be accelerated further reason. Well, 

of course, we have understood that these the most important operation for neural network 

training and it is also I mean, for going to be popular with many other kinds of workloads. 

 

So this needs to be optimized, right. So right now all of our efforts would be in terms of 

optimizing this GEMM kernel. Now just if you I will just point out once again that the difference 



when we are speaking specifically with respect to the GEMM operations for the Cu plus or 

similar kinds of libraries for linear algebra. 

 

We will be using this row major representation, right, we will because that, you need to 

remember that, because that is going to also play a role in our understanding of how things are 

going to happen here. So, for Asub k comes first followed by a row, for Bsub you have column 

followed by k here, right instead of the reverse that will be expecting in general to happen. 

Because let us understand that why is this important. 

 

Well, that would mean that the way that the data is getting access is a bit different, right. So that 

means here when I am accessing the data, what is the access from, the access of this data is from 

shared memory, right, the access of these data these are global load to share memory this is a 

load from the shared memory to the internal registers for doing the fused multiplication and add 

right. 

 

This is a there is a call to fuse multiply and add unit which is there in the GPU right. Now, this 

global notes are going to take their own time right. Now, again as we know that one of these 

loads will be coalesced and the other will be not right because one of them will be row wise and 

the other would be column wise strength figure out which one is what right. But here as you can 

see, this is for from the shared memory to the global to the fuse multiply and update unit. 

 

Please multiply and accumulate unit with the output going to a register of type acc and the 

variable name for the register is here right. Now, if you try to analyze that how this program 

performs. Let us just have a look into the intermediate code of the PTS code that will be 

generated for this kernel. So this peak into the PTX code for the inner loop lines 14 to 15. That is 

it right. So this is the inner loop. 

 

As you can see, we are doing 2 shared loads from the shared memory because of course Asub 

and Bsub are in the shared memory. And we are then engaging the fuse multiply and add units 

right. So, in each iteration of the loop, part shared activity is as follows. You are doing 2 shared 



loads followed by one fuse multiply add operation, again. In the next iteration of the loop, you 

are doing 2 shared loads and the real operation we are doing is one fuse multiply add. 

 

So as you can see that It is basically like only one out of every 3 instructions is useful for 

computation. But the other 2 are for memory accesses to the shared memory right. So if I assume 

that I have a significant number of fuse multiply add units, well, they are not really getting used 

right. So, fundamental reason is that I have lesser occupancy, because I am not making good use 

of the number of threads I have launched. 

 

Rather than that, I can make full utilization of the GPU bandwidth by increasing the amount of 

work that I am delegating part shared, because here as you can see, the third activity I am really 

getting is one addition of fuse multiply and addition operation for every 2 shared loads, right. We 

like to increase it, how would that be possible. 

(Refer Slide Time: 22:50) 

 

So for this, we will perform we will start to apply our threat coarsening techniques that we have 

seen earlier, right. So fundamentally what we are really trying to do, now we will try to ask that 

well, even inside a tile, I did not have a same number of threads in the blog, as is required for 

computing the number of elements in a tile rather than that in my thread block launch, let me 

have a smaller number of threads for computing the entry of the entire time. 

 



That would mean now for one thread, I am not just delegating it, the activity for reserved for 

computing one final output in the matrix. But rather I am asking you that you compute more than 

one entry in the final matrix, right. 

(Refer Slide Time: 23:40) 

 

So if I just draw a picture, it would be like this that let us say this is my final output. And I am 

going to launch tiles and all that. So earlier, whatever was the activity for one thread, let us say I 

am asking one thread to do the computation for 2 elements, or in general, maybe more than 2 

elements, right. So that is the amount of depends on what is my amount, of coarsening that I am 

pushing into the thread, let us say 8 elements, right. 

 

So we will see how it makes progress. So now as you can see, I will introduce a variable WPT 

work per thread. So of course, one thread will be now accumulating values for more than one 

output. So instead of keeping acc as a single value, single local variable, which maps to a single 

local register for part thread, I will make it an array acc WPT, so that the thread is accumulating 

values for multiple outputs, right. 

 

And then I hope you can understand things are going to be simple. It is like so earlier you had 

this loop, let us just compare with the previous and the current implementation. So earlier, you 

had the outer loop where you were doing the loads followed by the account, well you still have 



the outer loop. This is your. So this is a simple loop just for initializing the acc, right. This, you 

are just initializing basis here, initialization. 

 

But then this is your normal loop of the previous work. But here earlier you were just doing 2 

shared loads, right, this one and this one. Now you are doing those 2 shared loads inside this 

loop. This loop is running from 0 to WPT minus 1. That means you are performing that many 

shared loads for both A as well as B, right. And you have to compute the shared load indexes by 

looking into the values of the offsets and all that which I think you can easily figure out right. 

 

Just to understand that for part shared activity, we have increased the number of loads here, well 

how does that help because till now, we have not seen how the compute increases per thread 

because we have increased the number of loads per thread. Well, now, let us look into the 

compute part. So, after the loading is done, here, you have the compute earlier, your compute 

was just this loop followed by this multiplication, right. 

 

But now, inside this loop, you have another loop where you are doing this multiplication. So 

earlier, what was the situation let us say for this entry, you are computing this multiplied by this, 

right. But now you have 2 entries. So you are going to compute this multiplied by for one thread, 

the amount of activities, let us say you have 4 entries, you are going to compute by this thread. 

So you have to load data from here. 

 

And I mean, you have to multiply the data from here along with the data from all these 4 

columns, right. So there is the part shared activity you have inside the loop now, right, that is 

why you have this internal loop. But what is the beauty of this internal loop. The beauty of this 

internal loop is that of course, here when I am drawing I am using the normal matrix 

representation, you have to just switch it accordingly. 

 

Because as you can see that the indices are again in column A and all those formats, but if we are 

trying to understand in as you can see that when this loop is making the computations for these 4 

points, it can take one value here, it has to multiply that value with the value here, here, here and 

here right. So one load of this multiple loads of data from Bsub, and that many number of 



multiplications, go to the next iteration of the loop, one load from Asub multiple loads from 

Bsub that many multiplications right. 

 

So there is the good thing right. Because since you are delegating more activity for this thread for 

that one load is common for multiple loads of data from the other array right. So that is the good 

thing since this is constant, you have less number of loads at least for one of the inputs and that 

increases your part thread computation. Now, I hope this is clear. So, the first good thing is you 

have coarsened the amount of activity per thread. 

 

And the coarsening is more for the compute part rather than the load part. So, if I just compare it 

with the previous implementation, the amount of loads from shared memory to the registers for 

doing the fuse multiply and add are drastically getting reduced by a factor which is the threat 

coarsening factor. If you compare the number of loads here, so this is the PTX, considering that 

you have coarsened with a value of 8. 

 

So for ith 8 iterations of the inner loop what is going on you load this Asub once you have to 

load Bsub 8 number of times to achieve 8 number of fuse multiply adds right earlier the number 

of loads was 8 plus 8, but now it is 8 plus 1 right. So, this is not the inner 8 iterations of inner 

yeah is basically the innermost loop actually fine. So, we this optimization will be ending this 

lecture and in the next lecture we will see some more optimizations. Thank you. 

 


