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Alright, so we will start from where we left off,  
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Which was the parallelism available in shader programs, as we know that these are basic data 

flow style of computation, and the primary work of shader programs is to model how light 

interacts with different materials and accordingly to render complex lighting and shadows. So a 

typical shader program will will kind of interact with several specific units. That generate some 

specific components of output graphics.  

 

So for example, there will be the setup and rasterizer unit that will generate the pixel fragments 

that are kind of potential contributions to pixels, and covered by a geometric primitive, the pixel 

shader program is the one that fills up the interior of the primitive. So the first one, generates the 

fragments to be covered by the geometric primitive the interior will be kind of painted by the 

pixel shader program.  

 



So that also gives a hint that this is the block which will be more compute intensive. It includes 

interpolating power fragment parameters, textures, as well as coloring. And by raster operations, 

we mean the stage where things like color blending testing for stain style, as well as depth testing 

these are being done right? And. 
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So these are also specific units, if you look at the picture here.  
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So you have the input assembler the vertex world distributor, the pixel wall distributor. And this 

is units, which are present in this block diagram.  
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And they also nicely map to the graphics logical pipeline containing the input assembler vertex 

shader geometry shader retro rasterizer, the pixel shader as well as the output module phases. So 

we want to live, I understand that for a specific shader program. We have the setup rasterizer unit 

in the pixel shader program, and the output merging, or the output processing phase.  
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So we will see that how this kind of graphics processing, nice map this, they will kind of nicely 

map, two GPUs which support this massive multiple threaded computation. So for GPUs. The 

primary goal at its early age was to provide a solution, which was partly programmable. It was, it 

should be able to accelerate the working of this kind of a graphics pipeline. The reason being that 

you want the graphics to be rendered. 



With as much resolution as possible as fast at a at the highest rated possible the higher rate at 

which you can render the graphics, the images would seen the movements have seen that many 

that much realistic right? So the overall goal was to cover the latency of memory loads and 

texture features from the DRAM. So in order to activate the graphics pipeline very frequently, 

you would like to fetch this data from the DRAM with that much high frequency as possible.  

 

Or, you have to fetch in a large width, that means in each transaction use flatfish lot of data 

points and work of them work on them in parallel. And that is how you can cover the latency of 

memory loss is what it means by covering the latency. And then comes the point that, well, you  

have fetched a lot of data points for the graphics pipeline to work or the graphic should have 

programs to work.  

 

You should be able to work on them in parallel and to their compute right? So this is, this helps 

to accelerate also general parallel compute programs, but the primary goal was to accelerate 

graphics shaders in parallel. The third goal was to virtualize physical processes threads. And 

thread blocks to provide transparence scalability. Now this is an interesting point. We are trying 

to say that, see parallelism is not a specialized thing. 

 

Rather let us look at every operation as paralyzed think that that is the general case and try to 

accelerate parallel operations. That means, you always think in parallel, you start thinking that 

you have a thread of computation, where every computation has the ability to work on parallel 

number of on upon a set of vectors instead of scaler points. So with this design goes, this, this 

idea of GPU design started. 

 

And also the overall objective comprise that you should be able to simplify the parallel 

programming model by simply making a programmer write a serial code that says there's about 

what one thread of competition is going to do. And it's just that you write a sequential behaviour 

of a single thread, and it's just a case that the thread works on multiple data points in parallel, for 

doing all the operations sequence theory.  
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So, what were the first generation GPUs. So these Geforce 256 was introduced in 1999. So one 

of the first GPUs. And the content fixed function vertex pixel shaders, which were programmed 

with OpenGL and model Microsoft DX7 API. So, the graphics pipeline for these GPU, still 

content fixed function vertex and pixel shaders that means they were not software programmable 

in the sense that they can be.  

 

These are hardware blocks which understood the lower level API calls from OpenGL and 

Microsoft DX7. Then came Geforce 3, and this was the first programmable vertex processor was 

which was executing vertex shaders. So what happened in with them was this blocks of the 

graphics pipeline, the blocks highlighted in blue. That is a vertex shader the geometry shader and 

pixel shader.  

 

They instead of being fixed function blocks on the hardware, they became programmable blocks, 

that means the GPU will be having this general purpose programming interface through which it 

can run a vertex shader also a geometry shader problems also opens, these pixel shader 

programs. So for this, and all subsequent many contents are many places, we will be referring to 

this nice paper that came up in IEEE micro in the year 2008.  

 

The paper is titled NVIDIA Tesla unified graphics and computing architecture. So one of the 

position papers on this large initiative that was published at that point of time.  
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Now, what was that trade off that the designers of this Tesla, architecture, or the Tesla family of 

GPUs were really looking at. So, if you look at what is the activity of a vertex shader program, 

which was to be run earlier by vertex processors, as I said, the fixed functional blocks.Which 

would be part of the early GPUs or early, early graphics systems that there will be a specific 

fixed function hardware block which will do vertex processing it will be a fixed function block 

which will do the pixel shader processing and all that.  

                             

So for them. They have quite well defined objectives the vertex processors will operate on 

coordinates, but they will implement high precision math operations at low latency. So that was 

the design objective of a fixed function vertex processor when it came to the pixel fragment 

processing, they were optimized for high latency, but low precision texture filtering. They are 

typically more busy, considering large triangulations.  

 

So, if I consider large triangulation of an image, there will be lot of pixel points inside. Specific 

triangle. So processing at the pixel level will be having a lot of compute load for that. There 

should, need not be done at a high precision level, but the objective is to do more of them in 

parallel right? Now, if this vertex and pixel processors are implemented as fixed function blocks. 

It is difficult to select a fixed processor ratio. 

 



That means how much throughput should be allowed for the vertex processor and how much 

throughput should be allowed for the pixel processor, because that also. Because overall how 

much this pipeline will work at what is overall throughput that also depends on the input data 

input images triangulation scheme. So, if the, if it's really as has been thought here that is large 

triangulation, then the vertex processors will be operating on lesser number of points.  

 

So this idea would hold that yes it can work on lessor number of points but compute in high 

position, whereas the next level will have lot of things to do part triangle. So they work on low 

position. But how about the triangulation is considered in input image as small, so then the 

vertex processor will have a lot of things to do, because there are a lot of triangles in the input lot 

of purchases to process, but the for the pixel process and part triangle job is reduced, right?  

 

So, if they are implemented in hardware as fixed function blocks. What is an ideal image 

scenario that I mean, the overall throughput of this sequence of fixed function blocks would 

actually be a function of how the input image has been triangulated and how it has been provided 

the common case may get accelerated, but the cases which are not common with suffer from 

performers from performance in video, right? 

 

So, the primary design objective for the GPUs. The Tesla architectures was that they should be.  

They should be these different things pixel fragment shader programs. They need not be 

implemented as fixed function blocks but they should be implemented uniformly on a program 

on a programmable processor, such that the same, the same processing fabric can be used for 

both of them.  

 

So that, depending on dynamically, what is the input triangulation, it can be decided how much? 

How many, how many threads will be doing the computation for vertex processing and how 

many threads will be doing the computation for pixel processing, so that overall we have a very 

high throughput. Now this unification helps in. As we have discussed the dynamic load 

balancing of these heading throughputs of vertex and pixel processing.  

 



And it also helps in introducing many other possible shaders. That can be part of the time for part 

of the graphics pipeline. As we know this is always the case when you move some hardware 

functionality to a software functionality with increased programmability. You can do more 

dynamic load balancing of things. So essentially, you move out from this fixed fixed function 

blocks. Make them all part of a programmable parallel processor. 

 

That is the GPU, and you just dynamically decide how many threads will be computing for the 

vertex or the pixel, what is good for the overall high throughput functionality required.  
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So coming to this Tesla architecture. We, we speak, we speak of, again this GeForce 8800 GPU 

with 128 SPs that are organized as 16 streaming multiprocessor for SMs. So in this specific 

GPU, you have an external DRAM control. You have fixed function raster operation processors 

are opis, which perform color and deep from a buffer operations directly on the beam memory. 

So, given that you have this ROPs is present.  

 

It's possible that to do this specific operations on color and framework for depth directly on 

memory, instead of bringing them for doing some compute on the main processor pipeline, the 

interconnection network carries these computed pixel fragments colors and depth values from the 

SPs to the ROPs. So, just to get a feeling of the connectivity. If we look back here into the 

picture that we had for our GPU.  
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So we have this ROPs being connected with the interconnection network. And also, so the 

interconnection network is here connecting the different SPs, which contain the SMs and also the 

species. And this interconnection network also connects the ROPs piece, and these connect to 

DRAMS through this hierarchy of level two caches. Now coming to our point here. So, this 

external DVM control, and the ROPs.  

 

They perform color and depth depth framework for operations directly on the memory, the 

interconnection network carries the computed pixel fragment colors, so they carry the output 

pixel fragment colors and depth values from the  from the scalar process to the ROPs for doing 

the fixed function raster operation. And then they get stored back to the memory. The network 

also routes texture memory read requests from the scalar process to the DRAM, 

 

And they read data from the DRAM through a level two cache back to the SPs. So, this auto 

piece that is the raster operation for us. They still remain as fixed function blocks. And they did 

they do their operations and they stole back the data to the memory of back and forth to the 

hierarchy of L2 to caches. And the interconnection network carries this computed pixel fragment 

colors and depth values. We are from from SPs to the ROPs back right?  
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So coming to the graphics in the Tesla what are the different blocks that are present in the 

architecture. So, first of all there's the input assembler which collects the vertex work to be done. 

And then you have the vertice work distributor, that distributes this work packets to the different 

TPCs that are present. And this TPCs that are going to execute the final shader programs. Both 

the vertex as well as the geometry shaders.  

 

Now this is where as we already spoken that the programmability comes in earlier vertex and 

geometry shaders also used to be fixed function blocks, but now they become a part of the 

programmable pipeline. So, with this. Just to finalize once again, you have this raster operation 

still in fixed function blocks the data flows for between these, these, these raster of these ROPs 

and the end the DRAM through this level to hierarchy. 

 

And the interconnection network will carry the fixed fragment colors and depth from the SPs to 

the ROPs for doing the rester operations, of cores the SPs are there is to execute the different 

shader operations and coming back here, the TPCs is will execute this sheder operations and 

output data will be returned to the on-chip buffers, Which will further be passing the result to the 

viewport, or the rest of law.  

 

So this is how as we can see that the original graphics pipeline gets represented in the Tesla 

architecture with the shader operations, being done in the scaler process, whereas you have the 



raster operations, being done in the fixed function blocks, and also the buffers. The over all 

outputs are written to achieve buffers and they pass the result to the viewport. So, this gives us a 

basic idea of how graphics processing changed from fixed function pipeline to a GPU pipeline.  

 

And from here we will continue to how GPUs in general handle instruction processing in more 

and more in the SIMT style. And we will talk about general purpose programs.  
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Coming back to the way the different functional areas in the GPU. So you have each of these two 

pieces. They contain two streaming multi processors. Each of the streaming multi processors 

have got eight streaming or scalar processors. So this is scalar processors, along with them. I 

mean this SMs will also have two special found function units or the SFs. And there is a multi 

threaded instruction fetch and issue unit. 

 

So again if we just go back to this figure. So, this is the MCs we are already back so as you can 

see, we have this input assembler like we discussed from the graphics pipeline, then the vertex 

world distribution, which will distribute work, and also the pixel distribution that is to the 

workers and pixel works to the different TPCs. And finally we have the auto pieces fixed 

function props.  

 



Also, the texture units as fiction from blocks and outputs finally go to the viewport. Now, 

coming here to the core, the internal content of each of the streaming multiprocessors. So you 

have the I- cache for the instruction fetching instructions. And then you have this multi threaded 

issue unit, which is going to issue instructions in parallel to each of this scalar process or 

streaming process.  

 

As we have discussed this SM each SM has got eight scalar processors. And also, two special 

phoner function units or is a fuse. So, there is a multi threaded instruction fetch an issue unit is 

supposed to issue the instructions that are going to be executed by the scalar cores 

 

And also, as we have seen in that picture we have a 16 kB read write shared memory. As part of 

streaming multiprocessor. So, what is there inside each of these streaming multiprocessors In 

summary, each SP core will contain a scalar, multiply add unit. Does that mean inside each 

streaming multiprocessor you have got eight scalar, multiply and add units. Also the SM. As we 

have seen, it has got to have this special function units. 

 

And this special function units can be used for doing some transcendental computation. Also, 

each of this is a fuse content four floating point multipliers. So for all I can say that inside each 

scale, the streaming multiprocessor I have got eight multipliers add units. And also, eight 

floating one multiplayers, I can do eight floating point multiplication operation in parallel. And 

also, eight scalar multiply operations in parallel.  
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Now, coming to the execution model. So, as we have seen this idea of data parallel computation 

by instructions is well known as a single instruction multiple data. This is the idea. I mean, which 

amended it also from vector processing. And this idea, gives much more generalized. When 

people thought of the execution model for GPUs. So what people started talking about is size to a 

single instruction multiple threads.  

 

So that would mean that you have multiple threads of computation, or in a different way, I would 

say that I have a single thread of computation. It's executing a sequence of instructions, each 

instruction is working on multiple parallel vectors vector, vector type data points. So looking at 

the other way I can just say that. Okay. Since I have a single instruction processing, but is doing 

the same job for different parallel threads of execution.  

 

So that gives me that idea of what is SIMT that is instead of saying single instruction on multiple 

data. If those data points, all belong to parallel threads which are making progress in parallel, I 

would start calling them single instruction multiple threads. So, with single instruction multiple 

threads. I have a more generic model of instruction processing, because essentially what I am 

saying that, okay. To let us let us just take a simple example here. 
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So, when I am executing a sequence of vector instructions. In general, they may or may, they 

may be unrelated. That means. Well, they can be doing computation towards a similar objective, 

or they may not be doing so right? I mean, it depends on how the processor has figured out the 

parallelism, and it has found that Okay, I have multiple the thread instructions I can process them 

in parallel and all that.  

 

But now suppose I say I there. Okay, I have multiple threads of execution. So this is thread one 

thread, two. And this is three three. And I say that all the threads are going to do an add 

operation here. And then all the threads are willing to do some substract operation here. And 

then, all the threads are going to do some mult operation here. This is the demand of the 

program. When I say that, looking at it from another way I can start saying that okay.  

 

For this unit and assembly instruction. Because will. we aree looking to do an end not be 

processing, this a vector processing. But when can you do that, only if the warp for each of the 

threads are such that they are similar, this thread also needs to do add this thread also needs to do 

an add this thread also do an add. Once that is done, this thread will do a sub this thread will do a 

sub.  

 

And not only that, when, when this thread is doing the add, and the next thread is also doing the 

add. They are doing the add on consecutive items they are all doing the work on specific factors. 



So, just when I start looking at a program where all instructions are vectorized is not that I have a 

program, which is basically a scalar program. And for extracting parallelism purpose. The 

compiler had figured out that okay here, something is done in parallel.  

 

And then again, there is some vector processing that can be done. It's not like that. We are going 

to generalize this concept. And we aree starting to say that no, the entire program is like a 

vectorized operation. Just start looking at it in a way that with each operation you have a set of 

threads that are making progress. Then I can say that I have a sequence of these kind of 

instructions or single instruction, which is operating on multiple threads. 

 

Once that is done, again I have another surge instruction which will again operate on multiple 

threads. And that is how the computation progresses. So coming to SMIT Instead of starting to 

think just to just doing a basic summary again, because this is the most important thing here. 

Instead of saying that, okay. It's not that you are doing some program execution, where some part 

of the code is scalar. 

 

Some part of the code, the compiler has identified to the data parallel and hence this as executed, 

it has immediate some written instructions. Let us generalize that. let us think that every 

instruction execution is of some type vector. And not only that, the entire sequence of 

instructions is such that they represent the progress together by multiple parallel threads of 

computation. 

 

When we start talking like that with mean that okay, we are thinking of a programming model, 

where I have a sequence of instructions, which is such that every instruction is like an SMID 

instruction. Because, and. And not only that, every instruction is doing an SMID operation which 

is part of some set collection of threads. Then again, there is another assembly instruction which 

is again making progress with the operation for that specific collection of threads. 

 

And in that way things are going on. So in that way, what we have is a nice data parallel 

program. And that data parallel program has got multiple threads of computation. And they are 

all being executed synchronously by a sequence of instructions. Alternatively, I can look at it, 



just like this, that, okay I have a single thread of execution, but in each point of execution is 

working on multiple different data points. So just to make things very clear  
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And not to get confused. I can say that these two pictures are quite equivalent. I have two 

threads, which are executing like this. But whatever they do here. There is an add on vector's so 

comfortable, so there is vector component v1 vector component v1. I mean, sorry v11 and v12. 

And then again, so there is the first operant, and then there is some second operant. They're 

doing an add. Then again, they are doing some other operation, like that.  

 

So I can say that I have a sequence of SMID operations going on on multiple different threads in 

parallel. Alternatively, I can say that I have data, sitting in vector datatypes is one thread going 

on which is going on, and doing a computation on them, producing a result. And then again it is 

doing a computation on some other vectors. And again, producing a result, while there may be 

dependencies and all that.  

  

So there's less like thinking that I have a single thread, which is making progress, doing 

operations on parallel data vectors, or I can think that I have in the in that way. I have multiple 

threads, which are making progress in parallel. But both of these pictures at the instruction level 

maps to a scenario that I have a vector instruction, which is doing computation for different data 

points, belonging to these different threads 

 



Followed by another vector instruction, doing some other computation to this same set of 

threads, and they are overall making some progress. So just to summarize, that when I speak of 

SMIT, I can say that it's about one instruction, getting applied to multiple independent threads in 

parallel, not just multiple data lanes. And one SIMD instruction controls of vector of multiple 

data elements together, 

 

Whereas an SIMT instruction controls the execution and branching behavior of one thread. So, 

this may sound confusing, but this is what it means, when I talk about SIMD instruction. It 

controls a vector of multiple data lanes together. So, you have rectilinear type sitting there the 

type of data sitting on multiple data lanes and the same assembly instruction is operating on them 

right.  

 

When I say SIMT, it controls the execution and branching behavior of one thread. Because when 

there is a branching happening. These different threads may have different behaviors. That is 

why you have this instruction, which would mean something for one of the threads, but it may 

mean something else, it may be. I have one SIMT instruction which will mean something for one 

thread. 

 

But, essentially also going to mean something completely else, a different branching style for 

someone that thread. This is something will explain explain in more detail later on, further time 

being, just remember those two pictures that were discussing that overall idea is very simple. 

When I talk about is SIMT is just like saying that will lives generalize this concept of single 

instruction multiple data and start thinking 

 

That you have instructions operating across multiple programs are there lightweight versions that 

is threads and all the threads are making progress in log steps That means, fundamentally, all 

your instructions. Are SMIDs so you have one assembly instruction operating on different 

program threads. Again, another SMIDs instruction operating on different programs threads, so 

on so forth. And this is how it keeps on continuing.  
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So, in contrast with SIMD vector, SIMT will enable programmers to write thread level parallel 

code for independent threads, as well as a data parallel code for coordinated threads, this 

understand what we mean. So, as we have said this is SIMT, that means a single instruction 

working across multiple threads. But when you look at the behavior of the program, you have 

multiple threads. 

 

But you need to specify the functionality of only one thread, how that thread works for its, its 

data points and all that right? So, I can say that it enables the programmers to write the thread 

level parallel code for one trip. If different threads are supposed to do different jobs, then there 

will be some more complex code to write, which we will see that how that works. But ideally 

you are going to write a part thread behavior. 

 

And that is going to be replicated across the different parts of the different the different parts of 

the data segment. So in that way I can say that you said it is essentially a single thread of SIMD 

instructions so there's the alternate due taking on that I have essentially a single set of execution, 

but all the instructions are executing as a SIMT. So each of these streaming multi processors 

multi threaded instruction unit.  

 

They are going to create, manage and schedule and execute threads. So they will spawn the 

threads, They will manage their execution, they will map them to the real hardware that is the 



scalar processor or SPs, and the finally they will say that okay these are the threads that are 

executed they have committed and these are the threads that have to start and all that. So, this 

multi threaded instruction unit that what we showed in the last picture. 

 

This is the thing that is going to do this is also known as a hardware scheduler we will talk about 

that again later on. But the important thing is this management of threads are done in blocks of 

32 32 threads together are packed as something as called a warps. So this is a basic atomic unit 

of parallel execution in a GPU. So when I said it's a warps that. I mean, that I have 32 parallel 

threads there together and making progress in the space.  

 

So when a warps makes progress from some is by executing and add instruction. That means all 

those 32 parallel threads have executed the right instruction. Each SM. Now this is specific to 

that architecture that we've been talking about it manages a pool of 24 warps with a total of 768 

threads, again this is specific to architecture each SM maps warps thread to the SP cores. So, as 

you can see that there are not many threads to manage.  

 

So essentially, there are 768 threads, they are, they are being distributed across 24 warps 768 / 

32, Where 24 24 warps, but each SM will map this warps to the SP codes, how that is done is 

also the job of the SM. Now of cores, and I will just repeat these are the numbers that are specific 

to the GPU architecture we've been talking about with different GPU cards, there are these 

numbers keep on changing and they become much bigger with modern GPUs.  
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So execution of works you need operation cycle, the SM warps scheduler will select one of these 

24 warps. This is the synthetic example I have 24 warps. One of them will be picked up, and four 

in each cycle of activation of the SMs warp scheduler. It will select one of these 24 and map it 

SPs so that the SPS can process that warps.  An issued warps executes over four processor 

cycles.  

 

The SP cores, and the SFU units, execute instructions independently of cores that SP cores have 

got the scalar, multiply and add units, eight of them, And the SFU units, which are again eight of 

them which content and that there are two SFU units in each of them, and they are contained in 

total, eight floating point multiply and add units. So they are operating independently. So with 

this will stop here and we will start again with more details of how the SPs execute the warps in 

the next lecture. Thank you. 

 


