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Hi, welcome back to the lecture series on GPU architectures and programming. So, in the 

previous lecture we have been discussing about convolutional neural networks. And we are due 

to start with how to define parameters of the neural network. 

(Refer Slide Time: 00:34) 

 

So, essentially, in a convolution layer, we have a 3D weight matrix or an array of 2D weight 

filters and they represent the learnable parameters like what would be the suitable values of these 

masks right. And also the dimension of the output is dictated by these 4 hyper parameters which 

is what is the number of filters and the filter dimension stride and zero padding, right. So 

essentially the architecture of the CNN. 

 

So again, we will just remember what we mean. So essentially, we are talking about how many 

filters to consider that it is like how many weight matrices to consider what will be the 

dimension of those filtered filters or the weight matrices. And then when we are performing the 

convolution, convolution also has an important parameter which is the stride of the convolution. 

And the other thing is the amount of zero padding that we want to do right. 



 

Because we will soon see that how that affects the convolution operation. Now, where does the 

hyper parameters because essentially, your neural network architecture, how it really functions. 

It depends on this initial unknown quantity, right. Because it defines the architecture of the 

neural network. 
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That I mean how many filters to take, what are the structures of the filters and finally, once you 

reset the hyper parameter set then you are trying to discover what will be the value of arguments 

inside those filters. And there is a weight matrices, so that you get them loss function minimized. 

So, coming to the convolution layer. So, formally speaking, the layer takes as input a 3D image 

volume and the dimension is the number of channel cross height cross weight. 

 

And the hyper parameters are let M represent the number of masks of filters, F represent the size 

of the filter, right, I mean, it is an F cross F matrix like that, S is the stride, and P represents the 

amount of zero padding, we will soon see what that means. Now, what is this layer going to 

produce is going to produce a 3D volume of dimension, C prime cross H prime cross W prime. 

So as you can see there is a I mean, in terms of dimension I have the channels for the input, they 

are now changing to C prime why because the input image gets multiple different filters applied 

right. For example, if you see here. 
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I have a 3D image, I applied a 3D mask, I got one output. Because I essentially they are 

summing up to one mask right. 

(Refer Slide Time: 03:26) 



 

So, the number of outputs that I really get that depends on the number of masks I applied. For 

example, here if I apply 3 masks, each of them operating on 3D image, the 3D masks, each of 

them are going to give me 1 2 cross 2 output. So, for using the 3 masks essentially I get a 3D 

output like this right. So, essentially C prime is M there is a number of filters, but what is H 

prime. H prime is essentially the height the modified the height of the output. And W prime is 

the height and width of the output. 
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How to determine that. So, let us consider some examples to determine that and also there is 

some important parameter that is the zero padding, that how much of extra 0s should I surround 

the image with, so that I get to decide how many or what should be the output image dimension, 



we will see what that means. So consider P equal to 1 that is the padding is 1, that means we 

have this as the original image. 

 

So this is my image right. So if I just write down for this image, height is equal to 1 2 3 4 5, 

width is 5. So these are all 5, right. And then I decided to put one layer of 0s, right, so the 

padding P is 1, right like we already have here. So that increases, right the idea on which the 

mask can float around. Once I put padding of one layer, then I am essentially saying that will the 

mask need not start overlaying the image from this point. 

 

But rather it can start from this point and it can come up to this point, this point and go up to this 

point, right. So that increases the number of shifts that the mask can make, right. Why is that 

important, because that decides the output images height and width, right. So, as you can see, if I 

consider P equal to 0, then this mask of size 3 cross 3 can make how many stripes, it can make I 

mean can make how many movements on the x axis, it can have one location, then the next 

location, then the third location, right. 

 

So that makes output images width to be 3. But now with the zero padding, what are the 

maximum number of locations on which the mask can traverse in the x direction. So as you can 

see, I can really start here, then I can move the mask here. And then here like that, right. So 1 2 3 

4 and 5, because one of the most comes here and done right. So 5 possibilities, that is that makes 

W prime equal to 4. 

 

And since H is also equal to W, so the mask and also take how many locations in this direction 1 

2 3 4 5 right, is the last possibility, right. So H prime equal to W prime equal to 5. Now, let us 

now go and walk back on the formula. So these are formula right. 1 + H - F + twice of P divided 

by S. So let us see how it comes. Plus twice have P divided by S. Now, in this case since I am 

moving the mask by one position at a time, so the stride S equal to 1 right. 

 

So if you just check it out, so effectively I have A as 1, the height is 5. Now of course, the mass 

has a width F, which is equal to 3. That means after this point it really cannot move. So the entire 

height - 3 +, you get 2 extra positions to move because of the padding right., Since padding is 1, 



one position this way, one position this way, so 2 into 1, right, and it should work out to 5 - 3 + 

2. 

 

So that is 5 - 1 by 1. So that is 4 + 1 , that is 5, right. It is coming of properly. And similarly, the 

calculation can be done for W prime. So for W prime, I will really have 1 + W – F + 2 P by S, 

right. But what about modifying the S. If you modify the S and make it 2 the naturally the strides 

get bigger, so, you get one mask position here, then the next mask position will be here, right. 

Because this is then S = 2, right. 

 

And then the last mask position is here. Because, again you make another stride right, so, 3 

positions, right, so, I expect if I put S = 2, it should really give me the result as 3 and that is 

going to happen if you put S = 2. So, this is instead of 1, you have 1 + 4 by 2, that is 2, so you 

will get a 3 here, right. So, that is how it works. (Video Starts: 10:06) So, with P = 1, this is how 

you make progress and compute the convolved output you are moving in strides of 1. 

 

And you get all the values computed. If we just show a small simulation of S = 2, just like we 

discussed you will move in half of 2 and similarly, like just like we discussed the output will be 

3cross 3, right. (Video Ends: 10:31) 
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So, just to relate what is the difference now, instead of doing the matrix multiplication, you are 

now doing convolution and the operation essentially performs dot products between the filter 

weights and the patches of the input image on which it is working locally, right. By patch I mean 

the region of the input image on which we are overlaying the mask and doing the operation. 

Now, a common approach like if you want to do the convolution operation of the CNN 

efficiently is to leverage this fact. 

 

And formulate the operation of the convolution layer as a matrix multiplication. So let us try and 

understand what is the I mean advantage. So, just like we discussed, convolution is just 

individual dot products, right, all the filter weights and the input image, we already have efficient 

routines for performing matrix multiplication and different optimizations. 

 

So, if we can just adjust the masks weight values and the images, pixel values in such a way that 

the operation reduces to the matrix multiplication operation that can really help us to get the job 

done using available or optimized matrix multiplication routines, right. So there is a trick we are 

going to play for implementing convolution efficiently. 
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So let us see how it works. So, this is a very simple and nice example. So, consider on the left 

hand side, you have these masks, right you have 3D masks, and you what you really want to do 

is you have mask M 1 mask M 2 and you have mask M 3 at some region of the computation. 



What you really want to do is you have this 3D image and you want to transform this 3D image 

and get the transformed outputs for all these masks M 1 M 2 and M 3. 

 

And so is just like you have the input image and you want these transformed outputs to flow to 

the next layer. And they can really be done in parallel right because they are quite independent 

operations. So, as an optimization, what we can do is we can arrange the masks and the image 

data values in such a way that finally, the operation of computing the transformed outputs will 

boil down to the matrix multiplication operation. 

 

Because as we have seen that individually the mask weights will be component wise multiplied 

will get component wise multiplied with the image pixel values, right. So, what do we really do 

is very simple. Let us take mask 1, for mask 1, you arrange all the values in a single row, first 

layer, and then again from the next layer. Then again from the next layer right, this is all for M 1. 

Do the same thing for M 2, do the same thing for M 3 like that. 

 

And prepare one large matrix. What would be the size of course the number of masks times the 

size of each row. The size of each row is of course a square right. So this is a square, F = 3 here, 

right F cross F, I mean, I am speaking of capital F, which is the width or height of the filters, 

right. So, a square times the number of channels, 2 channels F square cross 3, that is the row size 

multiplied by the number of masks. 

 

So that is one large matrix that you are preparing by using all these masks. Why you do this. 

Well, that becomes clear when you look at what transformation we make for the image. So this is 

the image on the right hand side, 3 channels for each channel and sorry, here we are talking 

about different masks, right. Each of them are 3D masks, and each mask finally gets to 1 row, 

right. And each of them and the second row is for mask 2, third row is for mask 3, right like that. 

 

Here I have the image. And for the image I have 3 channels for each channel I have a 5 cross 5 

matrix right. Now, if you think what is really going to happen, when you do a normal 

computation, let us say I am trying to convolve the image with mask M 1, what am I really 



supposed to do. So I will take the first layer, let us say this brown layer. And then I am supposed 

to overly it with this image, right at this position. 

 

Then the next position assuming a stride of 1, and so on and so forth right. So that gives me how 

much for the for this position, I am going to do a transformation. For the next position again I am 

going to do another transformation, right. And for each of the computations, I am going to 

calculate and store the value, right. So how do I do it in the case that where I have modified this 

masks into that matrix that I have shown here. 

 

How do I really do it. Because it is expecting the input data now in a different format, right. So 

what I am really going to do is I am going to duplicate this data into multiple positions. What I 

do is let us say this initial position of the mask, initial position would have been here. And I am 

supposed to do F 1 multiplied by i 1, F 2 multiplied by i 2 F 3 multiplied by i 3, F 4 multiplied 

by i 6, F 5 multiplied by i 7 like that, right. 

 

Since I have i 1 F 1 to F 9 in a row, I just put this position of the data which is here. In the first 

overlay position of the mask, I just arrange it in the form for column. So now the column 

contains i 1 i 2 i 3 i 6 i 7 i 8 i 11 i 12 i 13 right, as you can see if I multiply this row, this row 

segment, let us say, if I just multiply this row segment with this column up to this, I get the value 

I was looking for, which I am supposed to put in an output. 

 

So if I just write what I am supposed to do after all this right, so for M 1, I am going to do these 

multiplications and I am supposed to get 3 cross 3 matrix right 3cross 3 and a stack of them 

considering the other components this, this, this, right, they are going to give me a stack of these 

kind of 3 cross 3 matrices, right. So now, what I am doing is I am supposed to compute each of 

these locations and they come out when I multiply this with this. 

 

This row segment gets multiplied with this column segment to give this value, right. Again, this 

row segment, when it gets multiplied with a next column segment is going to give me the next 

value right. So what is this column segment. Now I am going to shift the mask here, right. So 



now I am going to take values i 2 i 3 i 4 i 7 i 8 i 9. So, i 2 up to i 14, right. So, essentially this 

much, as you can see from i 2 to i 14. 

 

And at the last I am expecting i 3 to i 15. So i 2 to i 15 right, sorry, I mean, sorry, and last means 

this location. So in this location, I am expecting these values, right. So that is i 3 to i 25, as you 

can see i 3 to i 25, right. So all I am saying is I want this individual values to be computed, right. 

But what I do is I arrange them like these columns, I arranged the input mask like this row 

segment. 

 

And I multiply this row segment with all these columns to get the first layer of the 2D output 

done right. Now, you can understand the same thing is going to work for the next set of channels 

right, because now, if I just continue with the operation, then whatever mask values are there, in 

the next layer of M 1, they get multiplied with similar things here, right. And how does that help 

because I am not only going to compute this layer wise weighted values weighted sums. 

 

But the next thing is I am supposed to add them across layers. Since I am supposed to add them 

across layers. Here in this case, it is getting reduced to an entire matrices row multiplied by 

column computation, right, because I have already computed M 1 up to this position, then you 

compute all the locations from F 1 to F 9 for the intermediate layer in the mask and you are 

already having the data for this second layer arranged right here right. 

 

So, all you get is you are while you are computing this locations, you are also simultaneously 

computing the backward location for the same mask. That means, you are computing this as well 

as this value, but these are not the individual values that you are finally interested in what you 

are finally interested in, you are essentially interested in this entire column, entire row, pair wise 

multiplications and then the final addition. 

 

That is going to give you the final 2D output matrix considering 1 mask M 1 right, I hope this is 

clear. So, once you do this you get for M 1 what is going to be the value here, the next value, the 

next value and so on so forth right. So, for M 1 I am finally expecting what 9 values right and 



then they get multiplied here and finally, what do I really have essentially, and when you add 

them up you are going to have 1 value here, next value like that so on so forth. 

 

But, overall you have successfully computed the entire thing for the 2D image, right. And then 

what are the total number of positions that you have covered. If you look at it minutely, it is 

exactly same as the size of the output, right. Considering 1 mask, but finally, you are going to 

have so many of them right. So, the same thing will now repeat for mask 2, because you now 

have the entire mask 2 capture in a single row. 

 

So, you just keep on applying this mask 2 on all the columns individually, right. So, in that way, 

you will have all the values that you are going to compute for mask 2 available for these 

columns, get them working with the rows and you get the final results for mask 2 computed in 

the next row. First row is computing all the values that you would have required for mask 1, 

right. So, this is essentially mask 1 transformation with image i. 

 

Next row is mask 2 transformation with image i. Next row is mask 3 transformation with image 

i, so on so forth. I hope this is clear. Now, how are the entries holding up here. For mask 1, how 

many entries are going to be there. Well, it is really the number of overlay positions I can have 

for mask 1, which is essentially 3 cross 3, so I essentially get 9 entries. And that is what is going 

to happen because I have actually got 9, all the 9 possibilities for mask already captured here, 

right. 

 

In terms of each of the columns, so I am really having 9 columns here. So here in 1 row with 9 

entries, I am going to get the entire final output for mask 1, then for mask 2 in the next row, then 

for mask 3 in the next row, and that is how it continues right. So as you can see, the whole point 

of doing this transformation and the multiplication is I am successfully able to convert this 

convolution of many weight matrices into matrix multiplication problem. 

 

Where all these convolutions outputs are computed in parallel right. What is the overhead. Of 

course, you have some data overhead, because essentially you are creating a data layout where 

entries are getting duplicated. Why is that happening. Well, here you do not have any duplication 



you are just considering each of the masks and taking all of that together into a large matrix 

wherever arranged it in a smart way. 

 

So that the number of rows is same as the number of masks, the number of columns is same as 

mask size times the number of layers, which is obvious here, right. But so there is no duplication. 

The duplication is the way that you are arranging the image, right. Because here you are come 

for each let us this is the I mean, one layer of the image, for that you have got 25 possible values 

and you are duplicating them. 

 

Because you are trying to keep each of the possible overlay instances of the mask separate, since 

you are going to have 3 cross 3 overlay instances, 9 overlay instances, so you are having to i 2 

hear i 2 here you are having i 3 here i 3 will also be here. So, there will be many duplications like 

this, right. But as we are considering parallel programming language, so essentially we will have 

multiple threads, who will be creating this data structure in parallel. And then engaging into the 

matrix multiplication task. 
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So, the creation of this image to column thus what it is popularly called image 2 col col column 

operation is available in most of these free software's like the deep learning libraries like cafe. 

And this is one of those examples which you have just given, you can have a look at it with the 



slides that we provide, I think it is not required that we keep on talking about what is happening 

here in each of the lines. 

(Refer Slide Time: 26:09) 

 

So, just to repeat. 

(Refer Slide Time: 26:13) 

 

All we are doing is we are launching sufficient number of threads, so that each thread is 

responsible for copying one possible overlay of the image, right, I mean, the mask position. So, 

for this, I will have one thread will do the copy here. Another thread will do the copy here. 

Another thread will do the copy here, another thread for this, so on so forth, right. So, in that way 

the threats will be doing and doing the copy operations in parallel. 



 

And well, will there be some coalescing happening here. I believe so, because if you see, let us 

say one thread is doing copy of all these data, the next thread is doing copy of these data points. 

So naturally, I mean, when this guy is copying this one, the next one is going to copy this, the 

next one will be copying this. So, you have scope of memory coalescing, and successful use of 

shared memory and all that, which you can really explore using the optimizations we have 

discussed earlier right. 

 

But if you just look at a vanilla code that we have provided in the next slide, we are not really 

making use of shared memory or other things, but we are engaging multiple threads to do the 

copies parallel from the global memory, and you can check as a task. How much is the scope for 

memory optimization here. How much is the coalescent here and all that right. 
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So, that is kind of a disadvantage, we can say that when I am doing the image 2 column 

approach, I require extra memory, since some of the values are replicated multiple times in the 

columns. But the good thing as we have discussed is that there are really many, many efficient 

implementations of the matrix multiplication or the way people popularly call it is general matrix 

multiplication or GEMM. 

 



And people can take advantage of the GEMM operations. Once this image 2 column 

transformation is ridden. For example, there is this very popular CuBLAS library, which contains 

efficient implementations of GEMM. 
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Some of those GEMM optimizations are also things that we will be discussing later on. (Video 

Starts: 28:29) Well, that would be all about our convolution layer. The next thing that comes 

into space is the pooling layer. Because if you remember our convolution architecture, so (()) 

(28:38) we will just go back once. So, here, we talked about this multiple layers. So input layer is 

there, then convolution then pooling and then the RELU layers, right. 

 

So essentially, the pooling is nothing but you are doing a down sampling of the image. (Video 

Ends: 29:01) So summarize is typically a special down sampling transformation, the inputs and 

outputs both will be 3D image volumes, right and but there are not really any learnable 

parameters, unlike the CNNs and the convolution layers, but what do you do is you are trying to 

reduce the input image size. 

 

Why are you interested in the pooling. Because remember that while in the front, the input layer 

you may have these heavy images with multiple channels and all that but at the end if you are 

doing a classification kind of problem, you are only interested in last this class course right. So, 

you want a linear array with different scores field it up right. So, you there has to be intermediate 



layers interspersing the convolution layers where you will try to reduce the output image sizes 

right. 

 

Now, there are several possible pooling operations typically one is max pooling and the another 

is average pooling. (Video Starts: 30:01) So what does that really mean. So here by let us say 

these are bigger dimension image, and I am trying to reduce it to a smaller dimension. So I can 

do a max pooling, that means I choose a mask of this size. And for all these values, I just put the 

maximum here, I just move it over a stride of the same size. 

 

And again, I put the maximum value here. This is just a transformation, which is kind of down 

sampling the because I am moving from a more information representation to a smaller 

information. And compact representation and losing information here. So that is the down 

sampling right. So I could have done max operation or I could have also done a I mean average 

operation. So both are possible in pooling layers, right. (Video Ends: 30:51) 
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So just to formulize I am considering 3D images here for pooling, number of channels, times 

height, width and then the hyper parameters of the layer are well again have to decide that what 

is the filter size that I am going to talk about, for example, in this picture, there is a 3 cross 3 

filter, and it is moving in strides of 3, if I increase the stride size, I am going to have more 

amount of down sampling as we can see, right. 



 

So once I choose the filter size and the stride size, what the pooling, I mean, out of the pooling, I 

get a modified transformed output of dimension C prime H prime W prime, where naturally the 

C prime remains C same because nothing changes here, the number of channels is same, but of 

course, the height and the width values get modified, I mean following similar formulas that we 

like we have elaborated earlier. So it is simply 1 plus H minus the filter size divided by the 

stride. 
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So that gives you a smaller and simpler a transformed image to work with right, you can just do a 

simple implementation of pooling kernel, so, this is also taken from available repositories. 

Again, we are not really getting into discussing this operation is quite simple. 

(Refer Slide Time: 32:08) 



 

And the idea is that by doing the pooling, you are conveniently decreasing the transformed image 

sizes. So, that at the end of the pipeline, you really get the class course. 
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So, the other layer that you have is the activation layer, which is very similar to the ones that we 

have been talking about earlier. And for the activation function in CNN, the standard the one that 

we use is the rectified linear unit, which we have discussed earlier during our discussion on 

current neural networks, right. 
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So, if I look at the structure of an end to end CNN, you have an image here, and then you will 

have convolution layers, followed by pooling layers, again convolution layers, followed by 

pooling layers like that. And, of course, after every convolution, you are also I mean, you are 

going to have RELU layers also, right. So again, if I just go back into that slide where we define 

the CNS. So that is what you have input, then convolution, pooling and then the RELU right.\ 

 

And I mean this will repeat many times you have convolution again, the pooling was down 

sampling and then RELU and all that. And the RELU is, like we have discussed earlier, it is 

giving you the required non linearity. And so in that way, you keep on transforming the image 

and also down sampling your size. And at the end, you have a fully connected layer, just like our 

normal neural network architecture. 

 

And the fully connected layer will be reducing this, the transformed image to the final class 

course for the output layer where you have the different number of nodes as the number of 

classes that were talking right. 
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So that is how the CNN pipelines are arranged. The next thing that we will be looking into is 

how the data really flows across this pipeline, how the backpropagation and of course, the feed 

forward propagation works specific to CNN pipelines, what are the computations involved and 

how are they carried out okay. So with this will end the current lecture, thank you for your 

attention. 


