
GPU Architectures and Programming 

Prof. Soumyajit Dey 

Department of Computer Science and Engineering 

Indian Institute of Science Education and Research-Kharagpur 

 

Lecture-57 

Efficient Neural Network Training/Inferencing (Contd.) 

 

Hi, welcome back to the lecture series on GPU architectures and programming. 

(Refer Slide Time: 00:29) 

 

So we will just start with a small (()) (00:30) of our coverage in the last lecture. So, one was 

regarding this chain rule. So, if you just check, we have been earlier talking about this y’s in 

vector notation, but since we are having a summation here that would mean we are doing a 

summation over the components errors. So, that should essentially be small y i’s and also 

continuing further. 

 

One other issue would be like here in the chain rules derivative since we are considering capital 

Y’s which are the vectors. So the summation would really not be there, right. 

(Refer Slide Time: 01:06) 



 

Why so if we remember that we have already discussed how we do the forward pass, and how 

are the derivatives related, how to compute the derivative of the loss function with respect to the 

weight matrices w and w prime, and how those are really used to figure out this value of the 

derivative that is in the second stage, it is this X transpose delta 2 where I can also have the delta 

2 expressed as the value of delta 1. 

 

And W prime transpose and then the activation functions gradient at those values, right. So, with 

this, I believe we had already discussed what was a backpropagation rule that in the 

backpropagation pass you re-compute W primes, so you re-evaluate using your computation of 

delta 1 and delta 2. You are essentially re-computing W prime to be W prime minus A transpose 

delta 1 and then you are also using delta 2 to figure out what will be the updated value of W. So, 

that would be W minus X transpose over delta 2 like that, right. 

(Refer Slide Time: 02:10) 



 

So, like this was our summary, that whenever you are doing the feedforward propagation, it is a 

series of linear and nonlinear transformations, essentially all in matrix operations. And during the 

backpropagation, you also have a series of such transformations. Again, that those can be I mean, 

but they start from the output layer towards the frontal layers. So, that is why it is 

backpropagation. And we want to do all those things using the parallelism that is available in the 

GPUs, right. 

(Refer Slide Time: 02:37) 

 

So, with this background, in case you are interested in building a deep learning library, so that 

would mean your library should have to support the following things that means it should 

provide constructs like how somebody can easily specify the neural network architecture, what 



kind of efficient routines, I can implement as part of the library, so that I have feedforward back 

propagation and gradient computation these features available, right. 

 

So they should just be available as function calls when I am building a complex neural network 

architecture and going to implement it for doing all these computations, right. So, of course, and 

using these routines, I will like to build high level routines for doing that neural network training 

as well as testing process right. Moreover, as we can understand that the library we like to 

exploit HPC resources. 

 

So, all the operations have to be implemented, these operations of feedforward back propagation 

gradient computations, they have to be implemented using suitable data parallel languages like 

CUDA or open CL or something else. And it should really be configurable. That means once I 

tell that this library should be running in this kind of an architecture, it should be explored. 

 

To figure out well, let us say I am trying to say that I want this library to run in a CPU GPU 

system, where the GPU has this nice is a sense this many espies and all that, then I should follow 

the standards we discussed earlier that how to really define the architecture, how to write your 

program in such a way that all the variables get configured based on the architecture or resources 

that are available right. 

 

Something like this is already available for us. Many of us have already heard about this popular 

deep learning libraries like Tensorflow and theano. And they essentially follow all this I mean, 

standards and discussions we have just done. But at the high level, they provide an abstract view 

of the neural network, they provide what we call as a computational graph abstraction, which 

helps you to encode the different parameters and the connections that should be there in a very 

complex neural network architecture. 

(Refer Slide Time: 04:56) 



 

So we are just trying to provide an abstract view on the left hand side, suppose you have this 

multi layer perceptron like we have discussed earlier. So, you have the input that input X vector 

is getting transformed with W right and then you get something called this intermediate value 

that is a Z which gets transformed with the activation function, you get something called A, these 

are all intermediate values that you are computing. 

 

Then again you have to do further transformation on A using these weights of W prime that 

gives you G and on this you apply the final activation function f again to get the output, right, 

like I mean, we have to understand that this is the neural network computation which this 

architecture will do. And we like to encode it in the form of a data flow graph. So, that is the 

usual way in which a computer scientist likes to encode his computation. 

 

So, it is basically like you have notes which kind of represent the compute I mean input data or 

some transformation that has to be done right. And then what the output of the transformation is 

provided to another node, where some further transformation will be done, right. So as you can 

see, on the right hand side, we have an example computation graph where we have 2 nodes X 

and W which provide the input data. 

 

And these data flows following these edges to this node, where I have computed the value Z and 

this node is level like this, f of U, V is UV. So, essentially I am trying to say that this node 



performs the following transformation. That is, it takes the left and right operands and does a 

matrix multiplication, right, then the output will flow to another node I call that output as A right. 

So, this is dependencies further captured by this arrow from node Z to node A. 

 

And here how do I really get A. So the computation that will provide me A is again, denoted 

here using this function, f of U. So I am just saying that the function takes whatever argument, 

let us call it U, the output is sigma of U, sigma is a activation function here, right. And then 

again, these output A and some other input node W prime, these 2 inputs flow to give me another 

output G. 

 

And this output is derived by considering the corresponding function levelling, where I am 

saying that this function is f which takes again 2 parameters and does their multiplication. So 

again, A and W prime gets multiplied to give me G. And then again, I have the another 

activation function giving me the final output which is O. So the convention we are following 

here is every node has the data representation. 

 

And following the dependency as data flows to an output node and the way I get output node is 

by a suitable function transformation and the function is provided as a level right. So, this is how 

we are trying to signify how the computation, how the data flows through this transformation 

network in the form of a computation graph. So, better to say is just another way to represent it, 

where we are making the dependencies explicit. 

(Refer Slide Time: 08:27) 



 

So, just to summarize this is a graph that will denote the functional description that I required for 

the computation. And node which has got no incoming edge is a tensor or it can be a matrix or a 

vector or a scalar value. A node which has an incoming edge is a function of the edges tail node 

computation. The edge represents a data dependency between the nodes like we saw earlier, the 

edge just tells me that the data will flow in the direction of the edge. 

 

And as long as the data is not available in the input nodes, the edges leading to some output node 

there, the computation is not going to happen, right. And node knows how to compute its value 

and the value of its derivative with respect to each incoming edges tail node. Now that is 

important. So every node knows how to compute this value. And that is known by the associated 

function. 

 

Here this node knows that it has to apply this multiplication function, right. And also, it knows 

how to compute the value of its derivative with respect to each incoming edges tail node. 

(Refer Slide Time: 09:36) 



 

So if asked, this node can compute the derivative of Z with respect to W okay. Now, this is the 

next thing that we will use. So considering J as the loss function, again, let us recall that we have 

this computation going on. So X multiplied by W is going to give me Z. We then compute f of Z, 

which gives me A. We use A and W prime to generate G, then we compute I mean, apply f on G 

to get O. 

 

And finally we using O, I compute the loss function, right. And as we have been discussing that 

every node knows, since the dependency of the node is always I can figure out the dependency 

by looking into the incoming edges. So for every node, I can compute its derivative with respect 

to the variables in these incoming edges, corresponding nodes, right. So, given Z, I can figure out 

this at dW are tracking backwards. 

 

Let us say I want to compute some overall derivative, I can follow the derivatives chain rule as 

we know, and using the chain rule, I can compute each of the individual derivatives and compose 

them. So we will see an example. But before that, all I am trying to say here since I have this 

kind of a dependency, for every node, I can figure out let us say from J to O there is a 

dependency I can compute del J del O. Similarly, I can compute del O del G, del G del W prime, 

del G del A. del A del Z so on so forth. 

(Refer Slide Time: 11:12) 



 

So, whatever is in the forward computation for the computational graph, so, it simply loops over 

each node in the topological order and computes the value of the node given its inputs, so, as we 

know that the topological order is nothing but a linear representation of the node ordering of a 

directed acyclic graph right. So, essentially I can compute a topological order for any such graph 

where the node which is dependent on some previous node. 

 

That dependent node will come later on in the order right. So, following the topological order, I 

can simply loop over the graph and compute the corresponding outputs. And then for backward 

computation, what am I supposed to do if you remember what we did in the neural network, you 

just went back from the output layer to the input layers right, essentially the same thing. So, you 

loop over the nodes in the reverse topological order. 

 

And you want to computing the derivative the final node with respect to each incoming edges tail 

node. That means you do this computation, you compute del J del O, del O del G and like that. 

So, this is how I can do the forward and backward computation. 

(Refer Slide Time: 12:27) 



 

But how does that really help, our overall objective is to compute this right del J del W. So, as 

you can see, we have been discussing earlier that I can follow derivatives chain rule. And since 

each of these expressions would be available to me, because I have these dependencies for each 

node, I know their values and all that. So, I can just compute each of these individual derivatives 

and compose them to get what is the overall derivative of the loss function. 

 

Similarly, I can also compute the derivative of the loss function with respect to W prime and that 

follows these red mark arrows right. 

(Refer Slide Time: 13:05) 

 



So, essentially this is how the computational graph abstraction is used to specify a neural 

network in for a corresponding deep learning library. And then given suitable implementation of 

the different propagation passes that will be available in the library, the computation really goes 

on, right. So, from this point, let us switch to another alternative neural network architecture, 

which is better known as convolution neural network. 

 

Well, this is very similar to normal neural networks that we have already discussed, but they are 

kind of also specialized that their architecture is tuned towards image classification tasks. So, 

what is special about image classification tasks. Let us understand that an input image when we 

know that is an image, it always is going to I mean for a very regular structure, it is going to be a 

multidimensional matrix, where each of the pixel values are encoded for corresponding to 

different channel of colors right. 

 

And given that an image has got certain of intrinsic properties, the convolution neural network 

makes use of those properties to decide these architectural primitives and end to end 

convolutional neural network will express a simple differentiable score function, it will 

essentially map the raw image pixels from the input to class course at the other. So the class code 

can be many things right I mean, so you are essentially let us say you are trying to I mean 

recognize some numerals right. 

 

So essentially, you want this number 4 to be recognized, and you have many output possibilities. 

10 digit possibilities. So the class for the digit 4 should get the highest value, right. And that is 

how you want this neural network architecture to work and assign the class code right. But the 

way it differs is the CNNs since they are going to be tuned towards processing images only, they 

are arranged in some specific ways. 

 

For example, when you are capturing an image, typically the arrangement even for a 2D image, 

your data structure shall be a 3 dimensional thing. Essentially, you should have the pixel values 

for corresponding to height and width coordinates and also for each coordinate pair of height and 

weight, you are going to have 3 channels and you have to have memberships for all those color 

channels right. 



 

So, you have the input standard in a available in a three dimensional standard. And 

corresponding to that, the CNN will have neurons arranged in three dimensions as well. And also 

there is something important that, in general, when people dig up CNNs, they also make use of 

facts like well, the neural network architecture did not have full connections at every point like 

each intermediate node can represent a filter, which is tuned towards gathering a specific kind of 

information and it may not be gathering it from all parts of the image versus specific parts of the 

image and all that. 

 

All you are trying to say is that once we decide that the input is an image, and these are the 

features of the image I am looking for, accordingly, I can decide weights and accordingly I can 

also decide the connectivity of the intermediate nodes. 

(Refer Slide Time: 16:43) 

 

So, holistically speaking, the CNN is typically made of the following layers, you have the input 

layer, after the input layer, you have these what we call as convolutional layers. For the 

convolution layer represent different image filters available as 3D masks which will be applied 

for mining information from the image. And then you have something called the pooling layer. 

Now this is followed by an activation layer typically that is taken as RELU. 

 



And at the end you have what we call as a fully connected layer, which is just like the normal 

neural networks. The input and output for each of these layers to 1 to 4, they represent 3D image 

volumes. 

 

So, up to the RELU layer, the input is a 3D image. After the convolution operation, I get 3D 

volumes. After the pooling, I will again get a 3D volume with some reduction in the length, the 

height widths etc. Even after RELU I have a 3D volume, but the fully connected layer is used at 

the end and the 3D volume is flattened, and it is provided as a linearized score, right. 

(Refer Slide Time: 17:53) 

 

So, for example, we will just show some examples here like which are popularly use data sets, 

for example, this CIFAR 10 data set. For that, I can have a multi class classification problem, 

which is pretty well known. I have input images of size 32 cross 32. Let us say I am trying to 

classify these images into these categories provided in the left hand side. And of course, I have 3 

channels for red, green and blue, right. So, overall the in each of the input images is of the 

dimension 3 cross 32 plus 32. 

(Refer Slide Time: 18:29) 



 

So, the convolution layer, this is essentially the core building block of a CNN and this is a 

computationally expensive layer. And it works on the input images, which are 3D image 

volumes. And essentially, there are some convolution masks or filters which operate on these 

input volumes and provide an as output this layer is going to again produce a 3D volume. Now, 

the dimension of this output, they are dictated by 3 parameters. That what is the depth of the 

layer at what stride it is going to work and the amount of zero paddings. 

(Refer Slide Time: 19:09) 

 

Will understand what it means. So let us take an example of a 3D convolution. But before that, 

let us just understand that I mean how this is again, I mean, conforming to the basic neural 

network architecture. So instead of having inputs like X 1, X 2, etc., which we're discussing in 



our earlier things, essentially, we were talking about test data or training or sorry, the training 

data or the test data depending on what kind of what you are doing, which will like vectors or 

matrices or tensors, right. 

 

And essentially, the image is also following such a representation. For example, on the left hand 

side, we are considering here, a 2D image. But the thing is we are operating it with a weight 

matrix. And it happens to be that in this case, the weight matrix is basically an image filter or a 

mask right and this and the way you choose the mask depends on what kind of operations you 

want to do on the image, what kind of information you want to take out of the image, right. 

 

So here you have an image, here we have a 2D weight filter mask, let us call it W, because this is 

essentially like a matrix vector multiplication, you are doing matrix multiplication you are doing 

the image is getting transformed with this mask. But the operation you are doing sorry, is a bit 

different from standard matrix, matrix multiplication. What you are really doing here is 

convolution operation, because that is how you operate filters on images. 

 

I mean, of course, what is convolution, how exactly we do convolution. I mean, what is the 

motivation behind doing that. I mean, as we know that these are standard image processing 

algorithms, and they are a standard transformations coming from signal systems theory, who is 

defined that will, by performing convolution with some specific filter, what information am I 

really going to get. 

 

So we are really not looking into that whether but rather restricting ourselves to understanding 

that well how to implement a convolution. And the important point for us at this point is to 

understand that here, the weights do not do normal matrix multiplication, but rather that gets 

replaced with the convolution operation, which is the specific feature of convolution neural 

networks, right. 

 

So, how does it really work. For example, if we take this 5 cross 5 image, getting convolve with 

a 3 cross 3 mask, essentially, this mask is going to slide over the possible locations on this 

image, and compute and output 2D image like this, okay. (Video Starts: 21:44) So, let us try 



and understand how this is going to work. So maybe we will push in some values here. (Video 

Ends: 22:01) 

 

So let us take it very simply, let us say it is all 1’s. I am just writing some example values here. 

Now, when I do the convolution, what is really going to happen is in your output, the value at 

this location you are getting by applying this input mask on this possible location, so just overlay 

this mask over this part of the input image, right and then you do element wise multiplication. So 

what do you really get. 

 

So essentially you are multiplying element wise. So the values that you are going to get 0, then 1, 

then 0 then again 0 1 0 then again 0 1 0 right, now just sum them up. So, you get a 3, right so, 

that is what you right here right. So, is that simple. Now, this gives you the value the 0 0th 

location of the output image. What about the next location. How do you get it. So, again just take 

the mask and overlay it, but by sliding it one part one position, right. 

 

So essentially, you will be applying the mask on these locations. So, let us say these are my 

values. So again you can do the computation now. So all you get is right. So, sum it up and that 

is going to give you a 0. So that is what you get. Similarly, you overlay the mask again here, 

right, fill up this entry. And then you downshift the mask by one position, fill up this entry, 

downshift, another position will have this entry, right shift one position, another position and 

downshift like that, right. 

 

So in that way, you just compute all the values, given this 2D weight filter or the mask, right. So 

we can continue like this. (Video Starts: 25:44) So that is how you can build on this example. 

And here in this animation, we are just trying to show that for the output location, how the 

change of the over overlay plays a role when you compute the output values of the image. So as 

you can see, you have this 2D input image, you apply the 2D weight filter mask and you are 

getting a 2D output image. 

 

So there is no change in the dimension. And of course, the dimension of this output image 

depends on 2 things, the dimension of the input image as well as the dimension of the mask. And 



in what is try I am applying the operation. We will see what that means. So then, as you can see 

that for the first location, you are putting the mask in the left, top left position that is possible. 

 

That is the overlay region, you shifted by one position and you keep on shifting like this in the 

output image, right. Move to the next row, again keep on shifting in that row, and so on so forth 

right. This is how you do the 2D convolution. A standard image processing transform. All that is 

happening is we are now claiming this is getting done in the first layer or any layer which we are 

defining as a convolution layer of a neural network pipeline. 

 

That makes it is a specific pipeline and we call it a convolution neural network. All we are 

saying in some of the layers, we are not doing a generalized matrix multiplication, we are 

replacing it by this kind of image filter mask convolution operations to get a different to get and 

transform image vector fine. (Video Ends: 27:33) 

(Refer Slide Time: 27:36) 

 

Similarly, this idea can hold for even 3D convolutions. So, just like we are considering 2D 

images and 2D masks, simply considered 3D image and convolving the 3D image so, there is a 

convolution we are denoting it here via 3D weight filter or mask W. So, what will happen here, 

the operation will slide over the image and compute the neighbourhood operation, the weighted 

sum. So essentially, the weights are getting multiplied with these values in the image that we 

saw. 



 

And then finally, we are doing the summation and then you do it over the elements of i and 

produce the output image right. So, essentially, you have a 3D input image, a 3D weight filter 

mask, and the convolution will operation will slide the individual filters over the images and it 

will do the neighborhood computation, like we discussed earlier already over the elements and 

produce the output image right. 

(Refer Slide Time: 28:43) 

 

So here we are describing it further, what really is going on. So as you can see, these are the on 

the left hand side we have the image and we are showing the different channels of the image, 

right. And then I have the 3D mask. So there are 3 2D masks essentially, right. So, that is what 

we have here, right these are the convolution operation, and here we are explaining it with a 

broader diagram. 

 

So, essentially you do pair wise convolution for each of the layers right. So, you have the mask 

arranged with specific layers for specific image channels and you just do component wise 

convolution operation computation. So, this is for the first channel, this is for the second image 

channel, this is for a third image channel, you are just doing convolution for the corresponding 

mask layers. 

 



And doing the operation like we have discussed earlier, you are taking this mask overlaying it 

over the image and then sliding it on both ways and computing each of the entries of the output 

image transformation. And how do you really compute after overlaying the mask you are doing 

element wise multiplication, essentially you are multiplying these image pixel information with 

the mask weights. 

 

And finally doing a weighted sum of this region, again the weighted sum of the next region and 

so on so forth, right. And finally, you do element wise addition to just flatten this 3D outputs to a 

2D image transformed output, right. So, here you are again doing element wise addition right. 

So, first, you already have already done an element wise addition, which was also weighted by 

the mask for computing each of these entries. 

 

And then for this 3 sets of 2D masks, you do individual element wise addition to get the values 

here, here, here, so on so forth right. 

(Refer Slide Time: 30:36) 

 

Now, let us move forward. 

(Refer Slide Time: 30:42) 



 

So, if we keep on doing it for multiple masks, because here we just considered a 3D image with 

one 3D mask, but in general, in a neural network architecture, I can have multiple mask right. So, 

these are 3D image, there is one convolution to be done with one 3D mask, another convolution 

to be done with another 3D mask, another convolution to be done with another 3D mask. So, as 

we have seen just in the previous picture. 

 

So, this convolution is going to provide me with one 2D output, this convolution is going to 

provide me with another 2D output. And again this convolution is going to provide me with 

another 2D output, so on and so forth, right. Now, we have already discussed the notion of hyper 

parameters. For example for our earlier normal vanilla neural network example. The hyper 

parameters were the different layers. 

 

And the different set of the neural network that is essentially the architecture of the neural 

network, the weight matrices and all that. So it also decided what it should be in this case for 

convolution layer, right. So, with this basic introduction to CNNs, we will end this lecture. 

Thank you for your attention. 

 


