
GPU Architectures and Programming 

Prof. Soumyajit Dey 

Department of Computer Science and Engineering 

Indian Institute of Science Education and Research-Kharagpur 

 

Lecture-55 

Efficient Neural Network Training/Inferencing (Contd.) 

 

Hi, welcome to the lecture series on GPU architectures and programming. 

(Refer Slide Time: 00:32) 

 

So, in the last lecture we have discussed about this perception example for the NAND 

function where we found that will, it is separable. 

(Refer Slide Time: 00:37) 

 



And then the issue was that we are trying to identify what happens if we consider XOR as the 

function. And so let us start from that example. So if I consider XOR so considering the truth 

table of XOR, so we have the positive output here, here. And this is the output corresponding 

to the other class, as we can see that we cannot have a linear classifier for the XOR function 

because it is the fundamentally the function is not linearly separable, right. 

 

So now this brings us the problem that how really are we going to tackle this issue. So getting 

into the root cause of the problem. Let us first identify that how really does this I mean binary 

classifiers where the functional form is linear, how really does it work. So in general, if I 

consider any linear classifier is basically the equation of a line right. So I can simply write, it 

is an equation of this kind of a form. 

 

So essentially this is I mean this is the way we can capture any such linear classifier which is 

separating the function and separating the values. But as we see for XOR, this is not possible. 

However, what about the other situations as we have seen that for NAND is definitely 

possible. So if we just recollect what happens for NAND. So we will have positive outputs at 

all these points essentially 0 0 0 1 1 0. 

 

And we will have the NAND function will evaluate to 0 only for the point 1 1 where AND 

evaluates to 1, right. So that definitely can be classified by a linear classifier. So this is 

linearly separable. Well, what about OR we can just do a quick check and find out what 

happens with OR so far, OR I have positive outputs here, here and here. That is 0 1 1 0 1 1. 

And here I have the negative output. 

 

So this is also linearly separable right. Now, in a similar way, I can figure out what happens 

with AND also and we can see that for each of these cases we can actually have a linear 

classifier, right. So the next thing that we will try to do is we will try to figure out whether 

these kind of linear classifiers can help us to figure out how to handle the XOR function, 

which fundamentally is not linearly separable, right. 

 

So for that, let us see first whatever it has been our linear classifiers if I can express them in 

the form of perceptrons, since I mean and that should be technically possible, because they 

are linearly separable. So, this was about NAND function right. So, since I have a line like 



this, I can check the corresponding since this I will get a linear classifier, I can see that well 

this will give me a line like this, which treatable values of w 1 w 2 and b. 

 

And what will happen is we will have weight w 1 and w 2 as minus 1, here, here and here. I 

can get the output where I give input of 1 and I have a multiplier factor of - 1.5. So, what we 

are trying to do here is creating a small perceptron corresponding to this NAND function 

right. So, we are trying to see that well, since this NAND function has linear separability I 

can express the in terms of this kind of an equation. 

 

And if I can express it in terms of the equation, I will have the value of w 1 and w 2 and b as 

like this - 1 - 1 - 1.5 and then I can create a small perceptron like this where x 1 gets 

multiplied by the weight – 1, x 2 gets multiplied by the weight - 1 and then I add the bias 

term which is this constant 1 multiplied by the weight of - 1.5. And then, if I am considering 

the output, I get the corresponding line which will have this kind of feature right. 

(Refer Slide Time: 05:56) 

 

Now, similarly, I can just stroke out well for all I can create a similar perceptron. So let me 

just write it for OR, I will have a similar behaviour with x 1, x 2, getting multiplied by these 

weights 1 and 1. And here we will add the bias, constraint 1 multiplied by the scaling factor 

0.5. And we can easily check that this is going to act as our OR, right. Now when we're 

talking about XOR well, let us figure out first whether I can actually express it using this OR 

and NANDs. 

 



Actually, it should be possible. So for XOR as we know I can actually write it as x 1 or x 2 

and x 1 and x 2 bar. So, this is my OR, this is my NAND and here I have AND. So all these 

are kind of linearly separable right. So, if we just break this down, I can have a representation 

like of course, I mean, you can just check that, in this I can have this thing expressed like this. 

So, what it does is it gives me an idea that it may be possible for something which is not 

linearly separable to consider that, well. 

 

I have some intermediate neurons with whom I can actually create this values, right. But what 

I mean, well, in this case for XOR I am able to create an I mean, I am able to check that I can 

create a ended version of XOR using ending of OR and NAND's where each of these OR and 

NAND's are linearly separable. But how does this work out in general, can I say that for any 

such complex function, which is not linearly separable, I can have linear combinations 

combining and creating such a value. 

 

Well, that is definitely not going to be true, right. Because following our linear superposition 

principle, that is really not going to be possible right. So, in general, I need a bit of non 

linearity in case I am trying to model sufficiently complex functions which are highly 

nonlinear. It has to be a combination of individual linear transformations and they need to be 

combined with non linear functionals right. 

 

So, we can say that well in I am creating an version of I mean of XOR where I am 

considering 2 linearly separable values OR and NAND and combining them with an AND, 

but in general how does that work. 

(Refer Slide Time: 09:30) 



 

So, the way we will look at it is as we have been discussing that we need a simple some kind 

of nonlinear function to be combining with linear components. And this is exactly what is 

done in the real perceptron which forms the building block of a normal neuron network. So, 

the way we do it is like this, you consider these kind of inputs x 1's and x 2's, which are 

marked here by this yellow nodes. 

 

And these inputs you are multiplying by weights w 1 and w 2. So, that gives you linear 

transformations, right. You can add the weights, I mean the bias here the b values, I mean, so, 

you put a constant and multiply by scaling factor like we have been doing for modeling 

NAND's and OR's, right, but then again, what you have is those kind of linear expressions, w 

1 x 1 + w 2 x 2, and similarly, many more, and you can have some constants added through a 

proper bias, but that is not enough. 

 

We do not have any kind of nonlinear component here. So, fundamentally, what we will do is 

well, will add our nonlinear transformation here, which is known as the activation function. 

So what we do is we will have edges or synopses like this, right, so these are my edges or 

synopses modeling, the neurons synopses they are kind of modeling the linear 

transformations, and then add these nodes, we have neurons enabled with their corresponding 

activation functions. 

 

For example, here we have a picture of one activation function, right. And what we can 

observe here is, these are nonlinear function, all it is doing is taking the input and mapping 

the output corresponding to this kind of a functional map that is provided here. So, in this 



case, you can see that this is not a line, right, so it is a nonlinear function. So, what we get 

here is let us call it a some sigma and the final output is sigma composed with f and f is the 

linear transformation. 

(Refer Slide Time: 11:51) 

 

Now of course, this the function we have here is not the only possible nonlinear activation 

function there can be many others. So, when we say that this neuron fires that means this 

function will have the input to the output, right. So, this example that we have here is for 

sigmoid for which essentially the closed form expression is like this y equal to 1 by 1 plus e 

to the power - x. 

 

So, as you can see it has a 0 crossing at 0.5 for this input 0 you get the output as 0.5 beyond 

that the function saturates to 1 and - 1 as you go forward, right. So, 1 and 0 as you go 

forward, right. So, of course, if you are putting the x value is very high, essentially this 

exponential term will decay and you get a 1 you put the x value as very low, as very high but 

negative, then again this will become very positive e to the power - x. 

 

So, then again what you get is that the y will come down to 0, right so, the highest possible 

value is approximate 1 asymptotically, the lowest possible value is as intrinsically reaching 0. 

And at 0 at x equal to 0, you have 0.5. So there is a sigmoid function. And in general, you can 

have other kinds of nonlinear functions. For example, you can have dysfunction, which is the 

tan hyperbolic function. 

 



As you can see, it is a different functional with respect to sigmoid, here we have the closed 

form functional representation. And also as you can see that the value you are essentially 

having z I mean as central 0 and asymptotically with positive and negative values you are 

approaching 1 and - 1 respectively. The other very commonly used activation function is 

value or rectified linear unit. 

 

So essentially is just a max between 0 and the input value. So if your input value is positive, 

that is what you get as output. So that is approximate that is kind of modelled by this linear 

this, slope right, and if your input value is negative when you get a 0, so, that is why you have 

for all negative values you have essentially on the x axis. So, these are the commonly used 

activation functions in neurons. 

 

Again, what is the objective here, we are trying to model highly complex nonlinear 

relationships, the way we are doing it is we will create a neuron network built using these 

kind of perceptron blocks, where the neuron is essentially modeling a nonlinear activation 

function the inputs are modeling linear combinations with bias and we are assuming that with 

this kind of combinations, we should be able to come suitably approximate any complex 

nonlinear function. 

 

And also as you can see, these functions satisfy some nice properties like differentiability, so 

that it helps you in to computing the weight something we will see how this kind of specific 

functional forms really help you. 

(Refer Slide Time: 15:00) 

 



 So, with this background, let us come to the genetic structure of a multi layer perceptron or a 

feed forward network right. So, what is the motivation behind this kind of multilayer 

perceptron as we have seen that their OR functions which are definitely not linearly 

separable, we will like to combine them with suitable linear maps along with non linearity 

and eventually we like to get outputs right. 

 

So, in that way for modeling complex behaviours, we will have inputs going inside to 

neurons which are there in the hidden layer and then they map the outputs to the output layer. 

And inside in each layer you have neurons which are connecting with the inputs or the 

previous stage neurons. And whatever set of layers you have in the intermediate between the 

input and output layer. 

 

They are the hidden layers and in deep neural networks, I mean all that difference is you have 

significant depth in the hidden layers, how that helps is you are able to combine a lot of linear 

and nonlinear activation functions in different possible ways. So that, that gives you the 

flexibility to capture many possible complex functional relationships, right. So, these are an 

example taken from source called Welch labs, which is in our YouTube. 

 

And it provides a very nice example, that suppose, you are trying to create a correlation 

between hours spent studying an hour spent programming along with what is the probability 

that you are going to pass or fail right you are going to model this kind of relationship. Well, 

this is an example there could have been many other examples. So, we are trying to propose a 

simple neural network architecture here. 

 

So, from the inputs, you have this weights. So, since from a 2 input system, you are mapping 

to a 3 neuron hidden layer and as you can see, you this is like a fully connected system here 

that means every hidden layer neuron has its connection to all the inputs in the input layer 

right. So, you just denote these connections by the weights w 1 1 from x 1 to f 1. Similarly, w 

2 1 from x 2 to f 1 right like this. 

 

Then w 2 from x 2 to f 2 w 2 3 from x 2 to f 3 like this right. So, here, what you have is after 

you get the values here from the synopses where you get x 1 multiplied by w 1 1, you have 

the activation functions a 1 a 2 a 3 like this, through which the outputs will pass once that 



neurons fire and then you are again multiplying them by these weights, the output layer 

weights w 1 1 prime w 1 2 prime w 2 1 prime w 2 2 prime, so and so forth. 

 

To get into the output layer, where again you have this nodes denoted by g 1 g 2 like that and 

finally, you have the output activation layer with I mean nodes denoted by o 1 o 2 like that, 

right. 

(Refer Slide Time: 18:16) 

 

So, this is a sample architecture for a classification system. So, essentially you are doing a 2 

class classification is for whether you are going to pass or whether you are going to fail like 

that. And then, what about regression. Well, like we discussed earlier regression is basically 

about computing the continuous function which is the approximation idea we have been 

talking about. 

 

So, that would mean at the output you have only one node in the output layer and that gives 

you a value in a continuous range right well. Whereas, in classification, you get values in all 

of this and whatever is the maximum you will like to come to consider that as the I mean the 

classification well, the definitions can vary as well your architectural right. But overall we 

can say that these are generic structure for classification. 

 

We have multiple outputs, and you are computing of real value here and here you have only 

one output for that because you got you want a functional output, right. 

(Refer Slide Time: 19:15) 



 

Now, what is the objective in our case, again, we will try to focus on that we are not going 

into that deep theory of neural networks and all that, rather than that, we are trying to focus 

on what is the exact computation involved while training and testing a neural network, right. 

So of course, we are not going to discuss core ML principles that need to be followed and all 

that we are trying to consider that suppose I am given this network. 

 

My objective is to train the network figure out by training we mean figuring out these values 

of these weights, given a test data set, so that we get a set of values which best approximates 

the functional relationship underlying the test data set, and, and how that computation can be 

accelerated by the GPU architectures and all that. 

(Refer Slide Time: 20:03) 

 



So, just doing a short summary here. So, for neural networks, what we have is each network 

has I mean, you have a set of neurons, and each of these neurons have a layer they 

accumulated the weighed sum of inputs from the previous layer and then a neuron fires that 

means, it applies its activation function and it will simply propagate the output of the 

activation function to the neurons of the next layer, right. 

 

So, essentially that we in that way, we have a series of linear followed by nonlinear 

transformations going on the inputs and propagating finally, to the output layer. Why is this 

necessary, because, as we discussed earlier, they are in real life you have many complex 

functions which are not linearly separable. So, the way we like to approximate them is 

through a combination of linear active linear maps, followed by nonlinear transformations 

and again linear maps like that, right. 

(Refer Slide Time: 10:56) 

 

So let us now come to the underlying computational parts here. So let us consider this simple 

system of feed forward neural network forward propagation. Okay, so let us see how things 

are going on here. So we have this training example where the input is like this. So you have 

a set of inputs, like for x 1, you have these inputs, like x 1 1, x 2 1. So that is the first input 

pair. 

 

Again, the second input, I mean, the second one you have is x 1 2 and x 2 2, and then the 

third one is x 1 3, and x 2 3, right. Now, so for this training examples, they are going to get 

multiplied by the weights. Now, as you can see, this is the weight collection. Essentially, it is 



a 3 I mean, you have a 3 cross 2 matrix, because you have weights, w 1 1, I mean, because 

each of them are mapping to this like this right. 

 

So, as you can see, you have got 6 weight components, but how really are they arranged. So, 

for w 1 you have 3 components because w 1 maps to the first neuron in the hidden layer 

second and w 1 2 and w 1 also has a component mapping to the second neuron in the hidden 

layer and similarly, w 1 also has a component mapping to the third neuron in the hidden layer 

right. 

 

So, these are the essentially the components of w 1 right. Similarly, you have 3 components 

for w 2 right and then when you are considering the input, so, for this x 1 and x 2, you have 

these training examples right now, when you are creating these multiplier you want the final 

value to be propagating to the hidden layer right. So, like since x 1 has these components 

right, you have you must mean the way this is arranged that means, for each of the values you 

are going to for each of the training examples. 

 

You are going to have values for these kind of couples, right and they are going to get 

multiplied with the corresponding components for the w's right. So, this gets multiplied with 

this column and similarly, right for the next row, you have it multiplied with the second 

column like that, and in that way, you are going to get the corresponding entries. So, the first 

row and the first column multiply to give you the 1 1 at entry here, right. 

 

So, that is what you get so x 1 1 multiplied by w 1 1 plus x 2 1 multiplied by w 2 1, and then 

you have the second x 1 2, multiplied by w 1 1. I mean, if I consider the next multiplication 

like the one I highlighted here, so this is going to give me so the second row and second 

column, that is essentially going to give me this entry right. So x 1 2, multiplied by w 1 2 plus 

x 2 2 multiplied by w 2 2, right. 

 

And in that way, I can easily figure out all these values that are slowly getting computed here. 

So that so using the training examples and the weights, I can have these values propagating to 

the net towards the output layer. Of course, these values now, we will have to pass through 

the activation functions before they get mapped to the before they get further multiplied by 

the weights and propagate to the output layer right. 

(Refer Slide Time: 25:06) 



 

So, let us see how that happens. So, here you have the inputs for the hidden layer right. So, 

these are the inputs for the hidden layer and here they get they need to be I mean computed 

right I mean, so, you have this is the output here for the hidden layer and then this hidden 

layer output gets mapped to the activation function some sigma and when this activation 

function applies out of that, you are going to get a set of activations which we have noted 

here like this a 1 1 2 like that, right. 

 

This is what we're trying to show is what happens after the activation functions get applied 

here. So essentially, as you can see that for a 1, you will have this next this like that, so and 

so forth. 

(Refer Slide Time: 25:52) 

 



And then at the output layer, you have this inputs coming out of the activation functions of 

the hidden layer. So, again let me repeat what we just did. So, we have this training examples 

getting multiplied by the weights right. So, as you can see, since we are considering this 2 

input system x 1 and x 2 and we have weights average like this, so, this is how one instance 

of the training examples will get propagated, right. 

 

Since the weights functionally form here a 3 cross 2 matrix you multiply it like this to get 

components flowing through the interaction right. So, since you are going to have this I mean 

since you are going to really have this kind of a setup, let you have these many values 

propagating through the layers. So, at each point here, you are getting you are receiving 

values like this. 

 

So, let us say for x 1 1 it gets multiplied by w 1 and then you have x 2 1 getting multiplied by 

w 2 1, and they are getting summed up here. And then after activation is going to move on 

here, right. Similarly, if I do get the other points like x 11, getting multiplied by w 12, and, I 

consider the other combination of x 2 1, getting multiplied by w 22, and it is getting received 

here. 

 

So, in that way I can say that each of these neurons, they are receiving the different possible 

combinations, right. So this guy is going to receive a combination of from x 1 and x 2 

multiplied by w 1 and w 2 1, right. This is going to receive a combination from x 1 and x 2 

multiplied by w 1 and w 2, right. And similarly, let us just take another example. This one is 

going to receive from x 1 and x 2 and it is getting multiplied by w 13. 

 

And the other guy is getting multiplied by w 2 3, right. So similarly, let us just consider one 

such example again, so four x 1. And, of course that is going to happen for all the different 

components of the values, right. That is also going to happen for all the different components 

of the values. And the components are like as we have for x 1, we have 3 components. For x 

2 we have 3 components, and so on, so forth right. 

 

So for each of these components, I will have this kind of combinations, right. So for the first 

set of components, I have the combination w 11, w 21, then w 12, w 2, w 12 to w 23. And 

this is, this is like what gets propagated in each of them, right, so for the first activation 



function, this is the part that is getting propagated for the second activation function here. 

This is the part that is getting propagated. 

 

And for the third activation function here, this is the part that is really getting propagated. I 

hope that is clear from this. And that is really happening because we are also considering that 

the inputs they are in this kind of a vector form right here it means something different, I 

mean for example, if the inputs are scalar that would be a different kind of computation. So, 

you have to really take that into account right for x 1 and x 2 both of them we are considering 

that will the inputs are arranged like this kind of I mean size 3 vectors right. 

 

X 1 is the size 3 vector x 2 is a size 3 vector and then for them I have this kind of values that 

are getting propagated. And after that when these values are propagated, and then I have 

these entire thing flowing through the network and then is reaching these activation functions 

and then the activation functions modify I mean they do suitable thresholding and they will 

create outputs. 

 

For example, for the first one I will get this a 11 a 21 a 31 it should be like that, a 12 a 22 I 

mean, so, this one let me just correct it here. So, this should be a 31 a 32 a 33 like that right. 

(Refer Slide Time: 30:21) 

 

So, once this activation values reaches then what do we really have. So, these are the values 

that are flowing out of the network right and now, they will get multiplied. So, this is what is 

coming and they now get multiplied by the output weights here right. So, what are the output 



weights here, so, as you can see now, since I mean here we are concentrating the regression 

example, so, everything is going to marginal right. 

 

So, from the hidden layer to the output layer we have single connections and they are 

represented by w 11 prime w 21 prime w 31 prime, 1 represents a single neuron and output 

and 1 2 3 the first index denotes that different elements in the hidden layer, right. So here we 

have the hidden layer outputs, they are going to get multiplied by these weights of the 

synapses that the connection and the hidden layer to the output neuron here. 

 

And then what we have is these vectors of a 11, a 12, a 13, I mean they are I mean and a 21 a 

22, a 23 and so, like these, this entire 3 cross 3 thing is getting multiplied with these 

corresponding weights here. So essentially here, what you have is a combination like this. So 

what is very propagating. So, you have a 11 multiplied by w 11 prime plus a 12 multiplied by 

w 21 prime, a 13, multiplied by w 31 prime these values. 

 

So considering the first components, right, considering the first components that are coming 

out, so, that is what is coming out here right. So, this is the first component, this is the set of 

first components that are coming out right for each of them and so, here what we have is all 

the components now, from each of them whatever is the first component that would get to 

propagate through this network. 

 

And then you have at the output these kind of combinations. For example, what is the second 

element in the output layer, it should be a 21 multiplied by w 11 prime plus a 22 multiplied 

by w 22 primes so on so forth. So, if we just again mark it out, so, this and this will give you 

the first element and similarly for the others. So, with this we have all outputs flowing to the 

output neuron where the corresponding activity function is now getting I mean, that is 

indicated here by the sigma and you apply the sigma here. 

 

So, then you get the final output from the output layer, which will be again a vector of size 3. 

So, here again just to summarize, we are considering that we have inputs which are kind of 3 

size vectors. So essentially we are trying to learn a relationship like this. So x 1 x 2. So f of 

this we are trying to learn it like this where this output is a vector of size 1 cross 3 and the 

inputs are all 1 cross 3s, right. 

 



So that is the kind of relationship we are trying to learn here. And accordingly, the system is 

tune, as you can see for the input weights, they are all having 3 components here. And for the 

output words, they are all having since I am finally mapping to a single neuron, they are all 

having single weights. So, I mean, we are not getting into further details of I mean, what is 

the motivation and all that. 

 

We are trying to cover it in simplistic terms more in terms of what is the underlying matrix 

multiplication relationships that are going to happen right. So with this, we will end this 

lecture. And in the next lecture, we will see how this really lends to the neural network 

training part and how I mean what are the underlying computations that need to be done for 

the training part. Thank you. 


