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Hi, welcome back to the lecture series on GPU architectures and programming. So, in the last 

lecture we have been discussing about CUDA streams and how overlapped execution can be 

performed across streams.  

(Refer Slide Time: 00:36) 

 

And in that regard, we have set up a nice example here of like how we can have overlapped 

execution in terms of over I mean, I would bet it is better to say overlapping the execution and 

data transfer. And we also mentioned that in case we have a device where we have a support for 

duplex PCI express bus then I can overlap today transfers happening in different devices and 

happening in different directions. So let us assume that we have a normal PCI express bus as 

well as is the case here so, we can overlap execution in the GPU device along with 1 sided a 

transfer.  
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Now, if you are really engaging different streams to perform concurrent execution you may also 

require sometimes to synchronize the executions because in general streams are asynchronous. 

So for that CUDA will provide you several synchronization primitives. In case you want the host 

program to wait till all the CUDA devices all the streams executing on the CUDA device to 

finish, you can use the first option device synchronize.  

 

If you want a single stream to you if you want the host program to wait a point where you want 

the single stream to synchronize you execute CUDA streams synchronize with the option that I 

mean which is the which specific stream you want to synchronize at that point. If you want 

synchronized an event in a stream on a specific event in a stream, then you have to give this 

command CUDA stream wait event.  

 

So you are saying that will this stream should wait for this event to happen. So there is again, 

anyone options, you want all the streams to synchronize at some point. So that is good our device 

synchronize some at some point in the host problem. If you want to synchronize a specific 

stream, you use CUDA stream synchronize. If you want CUDA stream wait event, I mean, you 

want that a stream will synchronize in an in a specific event to a specific event, then you use 

CUDA stream wait event.  

 



And if you want synchronizing across streams using an event, then of course, you do not need to 

specify the stream you just specify the event. And you have the command CUDA event 

synchronize just with the event argument. So you synchronize all the streams with this event.  

(Refer Slide Time: 02:58) 

 

So now coming to our concurrency example. So we will try to see how overlap execution can be 

attained. So let us say you have a main were you in then this part of the code is again, quite 

simple, you get the device properties, you are saying that in which device what is executing and 

all that and then you can perform. This is a piece of code that is necessary, I mean to figure out 

whether you have support for concurrent execution or not. So that is actually I mean, from the 

device property structure, you can figure out the CUDA runtime systems major and minor 

number.  

 

And using these numbers, you can figure out how much is the execution support, so in case the 

measure is less than 3, and or the device measure is equal to 3 and less than 5? Well, in that case, 

in cases less than 3, you do not have any support for concurrent execution. So CUDA kernels 

will be serialized now and also there is this issue with major and minor values. So based on this 

choice, I mean what is the major and minor value of the CUDA runtime system?  

 

There would be I mean, your device property will contain, I mean, whether I mean the value 0 or 

1 for the concurrent kernels flag, and that would tell you whether there is support or not. And 



also, I mean, there are 2 possible checks here, this is what I am trying to say that you can have 

concurrent execution fully, or you can have limited concurrent execution. I mean, in the other 

case, which is this else, like you satisfy the major and minor requirements like let us say you 

have major 3 or minor less than 5.  

 

Then in then in case your CUDA kernels is that mean for those devices, where the major version 

is earlier to the earlier 2, 3, or it is equal to 3 but the minor version is the minor of number is 

earlier to 5. For those devices, if you have CUDA kernels command state to 1, for the earlier 

devices, the thing is, you do not have a support for something called hypercube. So you will have 

concurrency support, but not fully, we will see what is that and in case you are not getting inside 

this chip.  

 

That is that means your CUDA runtime systems is saying that will for the GPU device we are 

talking about the major number is greater than 3 or the major number is equal to 3 but the minor 

is greater than 5. For that, you have compute capability and which is suitable for concurrent 

execution. So it will give you your code here, the example we are talking about here, we will just 

say that, you have concurrent execution capability, and it will also specify what exactly is the 

major and minor value  

 

And what is so that would that would be a kind of indicator of what is the amount of compute 

capability supported. Now, something you have interesting here that what is this Hyper Queue? 

So, there are earlier GPU devices where you have support for concurrent execution, but there is 

limited. So, let us try and understand what is this limitation. So, consider the situation that will 

you have got streams, and you have got multiple kernels, which are executing on the streams.  

 

So you were you want to symbol execute a task graph where you have the kernels A, B and C 

queued up. Let is call their instances the first second. First all the first instances of A, B and C, 

you want a to finish then be to work and see what to work on the data that we will be produce 

things like that maybe you have other instances of these kernels sequenced in some other stream 

and you have the same corners third instances sequence to some other stream.  

 



The issue is in CUDA older runtime systems, this streams will finally get into a job queue where 

things are pretty much serialized so you may have I am just trying an option here A1 followed by 

B1 followed by C1 followed by A2 followed by B2 followed by C2 so on so forth. And then the 

system is trying to identify what is the parallel is in every level, it does not see any parallelism 

here because of these dependencies, does not see parallelism here because the dependencies, it 

only figures that these are the 2 that can be really executed in parallel.  

 

Whereas we can see that will A1, A2 A3 can be executed in parallel B1, B2, B3 can be executed 

in parallel and C1, C2, C3 can be executed in parallel. So, this issue with me in the final 

hardware, queue has been resolved with the architectural support of some structure called 

hypercube, where through which it is actually able to see the dependency structure and see what 

is the full scope of concurrent execution? That is possible across the different streams. So, we are 

we are not going to more architectural details, you can read NVIDIA documents that are widely 

available.  
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So, for this example, let us, first see that how things can be I mean, how we can have overlap 

execution. So, what will first do is we will figure out what is the maximum number of streams 

that we can have so, we set up this maximum number of streams, because we will be declaring 

that number of streams and all that so, let us say we first initialize the host side that is on which 

to work on so, let us say initialize the host side which are getting locked and pinch to the host 



side memories for that we have support for a synchronous memory copy. And also we perform 

allocation for this GPU difference and I mean host reference areas here, and then we initialize all 

these data structures who say that is hA and hB.  

(Refer Slide Time: 09:24) 

 

And then on the device side, we actually create the different device that is A, B and C for the 

individual memory in a device global memory. So, once this is performed, then for bookkeeping 

purposes we create we define 2 CUDA events start and stop and set them up here for recording. 

So, we just create the CUDA events and the moment we execute this function CUDA event 

create So, the timing of whatever is going on next will, they will start recording from this point 

in the start and stop data structures.  

 

And then sorry so here we just create the events and later on when we will have to CUDA event 

record that is the point from which the start and stop events will actually start recording the 

timings. So here we are just creating and declaring the events and creating their corresponding 

objects. And then let us, we are just performing suitable declarations of the creed and blog 

dimensions, I mean, using code similar to whatever we have discussed earlier.  

 

And we perform normal memory copy here just to show a normal execution. So you copy the 

whole side data to the device side data hA to hB. And you perform and before this, I mean copy, 

you actually start logging the timing using a CUDA event record. In the timer, start in the event 



start, and here, you record the timing in the event stop. So you actually have the 2 timings before 

and after the synchronous I mean the normal sequential data transfers.  

 

So, for a normal sequential transport, what is the time elapsed that we will now we can check 

through a CUDA event elapsed time API by supplying it with this recorded times in this CUDA 

events at these points in the video will start and stop. So if you supply these 2 time point 

variables to this API, you get the value reported. And of course, after the CUDA event you will 

have a CUDA event synchronized call for the stop event.  

(Refer Slide Time: 11:42) 

 

Now in that way, we are just doing a bookkeeping we are just giving an example like how can 

you perform bookkeeping for all the normal calls? Again, we have a CUDA event record for 

start and you have a CUDA event record for stop and in between you make a normal kernel call 

for specific before let us do the sum of edits calculation for that kernel without using the 

synchronous API.  

 

So, then I mean, we are having everything together in the same program. So, for that we are 

again performing a CUDA event synchronize on stop here just to ensure that the full stream the 

default stream here synchronizes on this event and then we can just change the elapsed time and 

all that now, in case I want to see that what do you I mean, what is the I mean, I would also like 



to see what is the time required for doing normal sequential copy from the device side to the 

GPU, CPU side.  

 

We can make again and record a start event and stop event and in between I can copy back the 

data from the device to host and once that is done and I can compute the elapsed time here and I 

can print if I mean this measure timings through the print API is here so I can just check what is 

the normal execution time for this particular GPU device for a normal host to device copy for a 

normal device to a copy for a normal sequential kernel execution and what is the product time. 

The reason we are doing this and we are trying to show you usage of this API is soon we will be 

using this also for the synchronous case and compare the performance statistics.  
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So now, let us start with a synchronous case. So, we define this number of streams the maximum 

number of streams which are supported as was gathered from the system earlier. And then for 

each stream, we start dispatching a synchronous comments. So, we have a loop running from 0 

up to the number of streams less than that so that it will run this many number of times. Every 

time you are creating 1 stream. By invoking the CUDA stream create command for the stream 

variable that is that has been declared for the stream.  

 

You have a start of you start recording the timing for using the start event variable. And inside, 

then you mean inside this loop you will define another loop through each now you start 



dispatching data from the host side to the device side in chunks. So for so in this case, what we 

are doing is, first you have this loop. I mean, first we have a loop using which you create all the 

different streams. Then you launch this loop through each for each stream, you start performing a 

synchronous data transfer.  

 

So for the first stream, you give you provide data from the host to the device with in some chunk. 

Now the chunk size has been decided by this i offset value, as you can see, so this is actually 

telling you that well, you want to actually execute. I mean, you want actually that will this stream 

will copy data of this memory chunk. So just if we want to illustrate to an example, so let us 

overall memory chunk, and that you want to copy the total size of the buffer.  

 

And let us say that you have you want you want that in each memory copy comment, you copy, 

1 chunk of the data, let us say the chunk size is this i element. And in each iteration, you said 

offset value. I mean by 1 more successive among it just shifted by an amount that is equal to i 

element. So, you copied it from here to here, then from here, I mean suddenly falling by i 

element size like this.  

 

And also in each mean in each iteration that you have to specify the number of bytes. So, this is 

the chunk size in terms of number of elements, of course, you have to specify what is the total 

number of elements you want to actually what is the total number of bytes these elements 

occupy. So, that is expected in this I bytes point which we calculated earlier here as you can see, 

so, number of elements multiplied by the size of the type that is flawed, that is giving you the i 

bytes.  

 

So, this is a chunk size so, you choose it here and then inside this loop for each of the streams, 

you are copying 1 chunk of data inside this loop for each of the streams, you are copying 1 chunk 

of data for input at hA to output a device dA idea input at hB to the device are dB, and so on so 

forth.. And after these copying from the input data to the device, you also, you know, you make 

the synchronous call to the launch the kernel on this on the stream.  

 



So, you launch 1 kernel version of some areas, so, to the stream, of course, you want this kernel 

to work on that specific data chunk that has been copied. So, if we just draw an example, let us 

say in general is the whole side elements. So in the iteration, we have copied this data and this 

data to the device side. And so you have 2 of these segments and you want in the istream the 

kernel launch event will only work on this part in the next stream the kernel launches work on 

the next part so on so forth like that. 

 

So, essentially you have launched in the full iterations of the loop, you have launched 1 kernel 

instance in each of the streams and in each launch, the kernel instance is working on that chunk 

of data that has been copied. So, in that way, you have all the streams engaged with executing 

some part of the original data or enough amount of data. So, inside this loop, in 1 full iteration of 

this loop, and that means you iterate through across all the streams.  

 

And each stream is responsible for copying some, I mean some specific chunk of input data. 

Since there are 2 input areas each stream I mean, in 1 iteration of the loop, you are launching 2 

chunks of data from 2 input areas to the device, you are launching 1 kernel instance into the 

inside that stream to work on these 2 copied instances of chunks of data. And then you are 

launching another copy comment in the same stream to copy back the data law execute data that 

is produced by this kernel on this specific stream back to the host side.  

 

So, all that you are doing is you are breaking the overall copy to the device, overall kernel 

execution and overall copy to the host operations into small chunks and each chunk is performed 

the each of the operations of each of our corresponding to each of the chunks are executed in 

different streams. What will have the advantage will be the pipeline execution that we have 

discussed earlier that different streams will have some amount of copy some amount of some 

amount of data to work on, and some amount of copy that.  

 

So they will be able to overlap and they will be able to make good use of the devices. So if I just 

take an example and draw this figure, so like in stream one, I have an H2D copy of a chunk for 

array A so let us say this is stream 1, you make a copy of array A some chunk, then an H2D copy 

of some array B. Then you execute the kernel, so this is the first chunk. And then you have 



device to his copy of the first chunk. Now, this can of course, overlap with certain operations, we 

are assuming that the copies cannot overlap.  

 

So here when in stream 1, there is a here we have stream 1, we have the kernel operations, it can 

overlap with the H2D copy in off stream to have the second chance. So this this index is for the 

chunk in first stream, you are copying the first chunk. So a chunk would be the first chunk of 

memory, the second chunk of memory, the third chunk of memory. In each chunk, I have this is 

a number of elements, the sizes, i bytes and all that so this will overlap.  

 

And I can also have this is should be a second chance. I can have a H2D of array B second 

chunk, I can launch a second kernel instance here. So this will be the overlapping stream to and 

then I also have the device to host for the second chunk happening now in the stream 3, I can 

also have when this kernel execution is going on this is the point where I can start doing the H2D 

copy of the third chunk in the third stream for the array followed by A, B, and C, so on, so forth. 

So we have this kind of overlap execution. And that will actually help me to get the pipeline 

performance benefit like we have been discussing earlier.  
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So, we can, do it like as we have discussed, and then we can once we are out of the loop used to 

use the stop timer, and then we can actually measure what is execution time. And here we have 



just the normal freeing events and destroy events like we do for freeing and resetting the device 

now. So that is one way to perform the concurrent execution.  
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And then with that we can have certain statistics. So we I mean, there is no point in reading out 

the statistics is for you to see that what are the execution times for in case you have it I mean, I 

mean, how much time you have overlaps across streams, what is the effective speed up? How 

much of overlap as you can see that so, these are the measure timings you have that mem copy 

time from host to device mem copy time from device to host side for this specific vector size.  

 

So, these are all specific to 40 GPU. So, you can set up maximum 32 streams here, I mean were 

we are working with 4 streams here. And we are using these vector size we have launched the 

kernel with this gradient block setting and you have the mem copy times, for the host to device 

to it, the execution time and all that now, with the optimization of using concurrency by 

exploiting the streams, you have overlapped the 4 streams to get a reduced execution time of 401 

millisecond. So that is the advantage we can see here from overlapped execution.  
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Now, just to highlight that this is not the only possibility, there will also another possibility, what 

we did where we are copying data in chunks and overlapping the data chunk copies with the 

kernel execution. But let us say we do it in a order that is for each stream instead of it running 

across streams and letting each stream copy that data and in chunk let us say, for each stream 

first, we copy all the data in then for each stream, we execute all the kernels in parallel on the 

data.  

 

And then for each stream, we copy back all the data. So that can also be an option. So 

essentially, we are saying that so, here we are, we are also using the streams. But as you can see, 

we are not overlapping the host to device copies with the kernel execution, but rather we are 

dividing the copy operation across streams. So, let us say this is my input array and you have 

stream 1, stream 2, stream 3, you divide the stream into 3 parts.  

 

And you ask stream 1 to do some copy then stream 2 to do some copy and stream 3 to do some 

copy and in effect you have the entire thing copied. So, in that way with respect to the streams, 

you do not have much I mean, at this stage, you do not have some advantage because, well, at 

this stage what is happening is you are asking stream 1 to perform a copy, then stream 2 to 

perform a copy and stream 3 is performing a copy. But if I look at the scenario that with respect 

to timing.  

 



And the say now, once these things are done, so, you have the first stream, if you look into the 

program, so, the first stream has made a copy from the offset up to this size the second stream 

and this first stream will next perform the copy up to this size let us and then after executing this 

loop, then it will execute the other loop through which you again have some synchronous 

dispatch of comments using which you are on each of the streams are launching their respective 

kernels.  

 

And after that you have another third loop through each you are again executing a synchronous 

comment for copying bad the data where each of the streams are responsible for copying where 

certain chunks as per we I mean, as per we are directing here that which stream will copy where 

with chunk. So, overall, if we look at, well, what will be the overlap executions? So what do we 

really have? So, you have an H2D copy, let us say we are just trying to write the example.  

 

So, you have an H2D copy of array followed by an H2D of array B and then so this is happening 

for some stream 1. And then for stream 2 while this is going on, nothing can happen. But now, 

when this stream 1 has finished the copying for the first and the second arrays, for whatever 

chunk size it is supposed to do, then the stream to can do its copy. So, it has the H2D copy of the 

chunk for which it is responsible in array A. And then each 2d copy for the chunk for which it is 

responsible in array B. 

 

But while this is going on, we can have the kernel for the stream 1 execute somewhere here 

because there has been by this time this is going on. And this is an asynchronous API. So, you 

have just launched this comments, then you launch this comments, and then you will launch the 

copy back comments. So, the host, has just launched all these comments and moved out, this is 

where the action is happening.  

 

And the CUDA runtime system is trying to manage the executions in the concurrent streams all 

for the GPU. So here we have sequentialization what so these are launched, but when they are 

executing, this will be sequentialization. But then when for the next stream, the copying is 

happening. You can have the kernel execution. And then for the third stream, let us say you have 

the copies that are starting for then it is chunk H2D for array A, then H2D for array B.  



 

This is the time when the kernel can execute here for the second stream. And at some point of 

time, I will also have to copy back the data here. So you can go on and construct the rest of the 

picture here. Like we are just trying to show that earlier, we have been getting overlap execution 

at our granularity. But here we will be getting overlapped execution at a different regularity. 

Because you can you do the copies for A and for 1 stream entirely.  

 

And then for the next stream when you do the copy. At that time, you can execute the first 

kernel. So it is all about how you are actually issuing the comments. And you can either issue 

them in a depth first order or you can issue them breadth first we are seeing breadth first because 

as you can see why this is first you break the execution of the original program into streams 

across the breadth of the program. So, you first kind of you try to submit all the copy comments 

for the host to device copies, then you try to submit all the kernel launch comments in another 

loop.  

 

So, you go you go into streaming action and at the second level, once you have covered the 

breadth of all the streams at the second level, then you go to the third level in the third level, you 

know covered across all streams the breadth across all streams over a third level. So earlier was 

the order of streaming concurrency here we have earlier was the depth first order of streaming 

concurrency whereas here we have a breakfast order of streaming concurrency and we can also 

have similar execution speed ups here.  

 

So, it really is not the case that we get less speed up in one case or more speed up in the other is 

just like in what way you want to execute the comments and so that you can have over left 

execution.  
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And this will be some of the nice references from which we actually figured out what will be the 

important text that go into our presentation. Now some we have borrowed pictures as well as a 

text items from these references. And so these are the open CL and this is CUDA reference is a 

very nice book on professional CUDA programming. So with this will like to end our lectures 

for this week. And thank you. 


