
GPU Architectures and Programing

Prof R. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 5

Review of Basic COA w.r.t. Performance (contd.)

Hi, so after our basic introduction to come I mean, We have done a basic review of general

computer architecture trends, more specifically, some background on risk architectures, with that

background we are slowly going to delve deeper into how GPU supported, in terms of the

architectural details.

(Refer Slide Time: 00:47)

So, we have always fixed on the fact that while we discuss about the risk pipeline. We have

always say that how our risk processor will execute a single instruction, Using the standard phase

decode, execute cycle. And at the end of that we also discussed how parallelism is handled in

general purpose processors. And that also leads to some specific kind of processing that we know

as vector processors.

And as we know that GPUs represent as more specialized kind of vector processor. Which have

been found to be very useful for general purpose as well as graphics compute loads. So, the

question is how is this data level parallelism handled? So, when we talk about data parallel

algorithms. Essentially, these are algorithms that handle multiple data points in each basic step.

So there's a new term we have been talking about this data parallel algorithms.

When we say there is parallelism in execution of a program. As we know that there can be

parallelism resident at different levels. There can be instructional level parallelism, there can be

thread level parallelism. But when we talk about data parallel algorithms, the specific thing that

we mean is the algorithm has a sequential thread of processing, but in each step of the

processing. The work will be done, on multiple data points simultaneously.

So it is like doing an add of multiple data points followed by doing a multiply of multiple data

points followed by doing some other operation on again multiple data points like that. So, if this

kind of instances of computation is found very frequently in some algorithm we like to call it a

data parallel intensive or in general data parallel algorithm. So, typically, as we can see that there

can be several examples of graphics workloads.

And several other kinds of processing, multimedia computation, or there are several such

example workloads, which fit nicely into this notion of the data parallel algorithms and coming

to the way they can be handled in hardware, So of course to handle such algorithms we require

hardware processors that have the capability to exploit this parallelism right? Now, as we

understand that parallelism in at the instruction level.

Can be extracted in two ways like we discussed earlier, it can be done at the compiler level, it

can also be done at the hardware level. So, in a good case, it should be a combination of two that

the compiler is able to extract some parallelism from a piece of code. That has been recreated

sequentially, and also the hardware while executing instructions is able to mark out. Which of

instructions that can execute in parallel.

These are the two fundamental types we have already explored. Coming to handling of data,

parallel algorithms. There are three popular techniques. I mean, the third one of course is the one

that is general, I mean this graphic is processing units. The first one was vector processors. So,

This was the earliest style of data parallel compute, like if you are trying to do operations on a

parallel set of data points.

The same operation. Then, the solution that was proposed was vector processors will learn a bit

about them. Then came the notion of specific instructions, which will be part of normal CISC

processors like x86. For example, some MMX instructions, There are some multimedia

extension or AVX instructions which came later on the advanced vector extensions. So these

were kind of SIMD instructions.

Or single instruction multiple data type instructions that became a part of inter access

architecture, and they are essentially instructions which perform the same operation on a vector

data type, essentially, a set of data type, which are homogeneous. So, there's something that

came next. The earliest style of data parallel compute was vector process. And as we know in

recent times, that the idea of graphics processing units, has caught everybody's imagination.

And they represent the most modern technique of doing a lot of parallel computations in

hardware together.

(Refer Slide Time: 05:24)

So coming to vector processor so what essentially is the design philosophy. Behind a vector

processor is fundamentally like this that you have a register file processor. Apart from having

normal by normal I mean scalar registers. You also start defining what we call a vector register.

So what's the vector register, so each Vector Easter is a fixed-length bank holding a single

vector.

So say you have length vector. Which is holding the different length values for the different

dimensions of a house. So that can be stored as a single type is vector type of length, will now

start saying that is not located in different registers the different components of this type are not

located in different registers. But they are all stored in a single register which is having a big

much bigger size, but it also has these compartmentalized parts.

Each of which has. is kind of holding out some specific component of the vector. So each vector

register is a fixed-length band. It holds the single vector . So when I say that there is an operation

I am doing an operation like vector addition. So there are two vectors v1 + v2. I am having the

content of vector 1 in one register and the having the content of vector 2 in the second register

and they would get at it. Just as an example.

(Refer Slide Time: 06:58)

So if I just say that I have two data points v1 + v2. So V1 is a vector. That means, it contains

components both are n dimensional vectors and I am doing their addition. So, in our normal

program, or let us call it a scalar program. So what I would ideally do is I will have a loop

structure. And inside this loop structure. I mean, there will be a condition here right? And inside

this loop structure.

I will have some added instruction, which is doing addition of each of the components right?

And I break away from this loop structure. When the iterated variable of the loop features n

right? Now when I say, I have this kind of Vector instructions, I'd like to think that instead of

this. I have some code, which is like this. So I have a specific instruction let sat add.v, which

represents its adding content of registers, v1, v2 are storing it at some v.

So, in a way, what's happening is, there is some functional unit. And it is getting data from two

vector registers, v1 and v2, and output get stored in another Vector register v. Now the question

is this function it also needs to be a vectorized unit. That means it should also be able to work on

this input data types in parallel. Or maybe I may have lesser number of units for each word

multiple times faster enough to operate them.

But the important thing is we will come to this pipelining idea, but the important thing is instead

of having a single scalar instruction. I have a vector instruction. So basically, a hardware

instruction which when executed. So there is a vector instruction which when executed. It

operates on vectorize registers, and the vector is registers have got things dimensions, holding

each of the components of the vector.

And in that way. The same operation gets done. Maybe at a higher speed up while we will come

to that. So, the vector pricer will have a normal register file, as well as this kind of a vector

register file. And functional units may also be vectorized essentially just like a explain that I can

have an array of ALUs, which can do addition, subtraction, or other arithmetic operations in

parallel. Of course, now original scalar registers are also present.

Now, what was the first proposition in this space. Well, one of the most popular initial academic

propositions was the idea of vectorized MIPS, or VMIPS. So the VMIPS comprise the normal

register file, along with 8 vector registers, each vector register holds 64 elements. Each of these

elements were again 64 bits wide. That means. This VMIPS would have been able to operate on

vectors of dimension 64.

And in each of the dimensions, the number of bits that were there for holding some value in that

dimension will be 64.

(Refer Slide Time: 11:50)

So let us just consider a small example here of Vector SMP program. On the left hand side, we

have normal MIPS code. On the right hand side, we have a vectorized MIPS code example. This

is a standard example which you can easily find in the book on computer organization

architecture quantitative approach by Hennessy and Patterson. For the time being we assume that

the vector sizes are less than the vector storage.

That means we are working on data, where the data type is vector. And that means it is like an

array, or I mean basically arrays, but the dimension on which I am working on those arrays. They

are smaller than then the vector storage possible in the architecture. That means, let us say, the

vector registers have got 64 bit, 64 width that means 64 dimensions are allowed in and each

dimension has got some number of fixed number of bits to store the value.

So essentially, I am talking about working on arrays where the dimension of the array is limited

to 64. So here we are trying to do a simple scalar operation. So you want to multiply a vector

capital X with scaler, a, and then do an addition, with another vector Y right? So, with respect to

that. If you look at the MIPS code, the non vectorize scaler MIPS code. There are a few

important things to notice here.

So in the non vectorized code, you see there is this addition operation, which is essentially

implementing this Addition of a x i, along with y i. So, this addition operation is going to take

one of the operands from the register F4 and stall- back the result to F4. So, it has got an input

dependency, with the multiply operation. Why, because the other operand of this addition

operation is in F2.

And, F2 is going to be updated by multiply operation, previous to doing the addition. So, this

multiply operation essentially does this multiplication of a and i th component of x has stored

back to F2. And in addition operation, this has to be added with the content of F4 which is y

right? Now as we know that this is going to be done in a pipeline fashion. So for the multiply

operation to n it has to write-back the value to the register file.

And that would happen in the last cycle of its execution. And until unless that happens, add

cannot really do the operation right? So, ADD.D the needs to wait for multiplied or D. There will

be a pipeline stall, as we have seen earlier. And also, if you look at the instruction is S.D. So .D

of course means in MIPS mnemonics it means I mean we are working on double data types, just

to remember.

And so this again has to wait for the execution of ADD to complete. Now why is that, before we

stored instruction is S.D the store instruction is going to store the content of register F4 to some

memory location right. But this content to get by would get updated by add previous to that. and

then so then again for add to finish the write-back to F4 has to happen. So, S.D has to wait up to

the point when the write-back where F4 is completed for the ADD.D the operation.

So, as we can see in the normal scalar implementation. I need to have the loop with the loop

iterate variable i. I mean, in each iteration, I am doing, practically a x i + yi. And then I am

implementing i. In each iteration, I have the ADD, which needs to wait for the multiply, and also

the stored instruction is to wait for add. Now let us look at the end and this wait of wait has to be

done in each iteration of the loop, there's the whole point here.

If you look into the vectorized code. As we can see, this add instruction has to wait is vector

ADD instruction has to wait for them with their multiply instruction to complete. But wait how

many times. Once, the vector store instruction needs to wait before the add instruction gets

completed again. Wait, how many times. Once, because there is no loop here, assuming of

course the dimension of the data size is less than the vector storage.

But then again there is a loop here, even if this assumption was not going to work. That means

the data size was not less than vector storage. Still, then I would have a loop with much less

number of iterations, the number of iterations would have decreased by a factor of vector

dimension, so you can understand how many, cycles of waiting. You're going to save. If you

have the vectorized code, and the vectorized hardware for executing the code.

So, overall, the summary would be this the vector process, they will be executing scalar as well

as vector instructions and vector instructions pass a lot of parallel work to the hardware. Of

course, there has to be that much parallel hardware based compute capability, along with register

banks which are vectorized. Now, what about the functional units, the hardware must have

parallel functional units.

But it needn't be like this that okay my vector registers are of size of size 64. So I need to have

64 ALU, it need not be that that the functional units is can be either fully parallel or a

combination of parallel and pipeline units. It depends on how the hardware is implemented. For

example, if the clock rate of vector processor is halved doubling the number of lanes will retain

the same potential performance.

These are standard optimization between pipelining and parallel processing. We will have an

example for this. Now, the question is, if I have support in hardware for such better instructions

as human that I have such support. Is there some overhead for the compiler oh yes there is,

because then your compiler has to identify which are the segments of code that can be vectorized

were to emit a vectorize multiplication instruction.

And where it cannot emit vectorized instruction. So this loop the vectorization and handling of

dependencies is something that has to be done by compilers working towards vector processors.

(Refer Slide Time: 19:02)

Coming to vectorized hardware. So, how can you really implement vector processors, of course,

as we understand that. the good thing is I have less number of instructions to execute. Now the

instructions may take less amount of time. If I have a lot of parallel hardware. It may take, not so

much little amount of time, if I cannot really execute all the vectorize instructions I mean all the,

all operations in parallel.

There has to be some thread off. But this idea always holds that since I have much less a number

of instructions to execute the number of weights in the pipeline would be less. So coming back to

how Vector instructions can ideally be executed. So let us consider a thread off scenario here that

suppose I am just trying to show that this a single lane of execution here. So I am assuming that I

have this ALU nicely set up.

With the same port being connected to, to Vector registers, containing their of dimension, 10,

each of them. And there is a single piece of ALU here. So I have been provided with an add.v

kind of instruction. But then, since there is only one functional unit that adds happens seriously.

in a serial manner. But the good thing is, there is not much of software assembly to execute only

with that vectorize instruction.

The entire pipeline understands that it has to operate A1+B1. And then it has to update the value

somewhere. And then it will operate on A2+B2 update the value somewhere, it will do all the

things, but in a serialized way, due to the absence of multiple vector processing lanes is a single

lane execution. What is the other option. Now suppose I have Vector processing width just like

earlier, I have 30 years to vectorized registers of size, like this, A1 to A9 is 9 size registers.

But I do not have that much width in terms in terms of vectorize lanes, I do not have that many

parallel functional units. Let us say I have this kind of 4 functional units. Then what should

ideally happen is the inputs will get distributed, like this. So, maybe they will be distributed in

this kind of interleaving, in this kind of a interleaving, so the content of the Bs let say they can be

distributed by A4 followed by A5,A6,A7 again A8, again A9 like that.

So across a different functional units. So I can say that, okay, although I have Vector width of 9,

but the functional units are present here are only 4. So I have some speed up, but of course the

entire addition will not be a single cycle operation, it will take multiple cycles. Of course, in this

case it will take less number of cycles with it to switch to this, but it will not done well, it will

not get done by a single cycle. again just to repeat the good thing here.

It is, I have a smaller assembly to execute the pipeline is being told that you have to execute a

vectorized instruction. So the number of weights, are less, but how fast the instructions will

execute depends on how many parallel hardware units are really present.

 (Refer Slide Time: 22:35)

With this background on architectures. Let us just have a look on GPUs and their basic

architecture. So this idea of parallel instruction handling by vector architectures, as well as the

earlier, well known ideas like instruction level parallelism techniques. They were borrowed in

the domain of graphics processing units. First, to accelerate specific graphics workload. And

then, as we know that it has been found that

They can accelerate most general purpose data parallel workloads also. So this is a snapshot of

our sample GPU system one of the earlier ones. This is a snapshot of the GeForce 8800 system

process basic block diagram architecture is has been reproduced by me from the Hennessy

Patterson's famous book. Again, which has also got a special chapter on GPUs. So, as you can

see that the host CPU and the system's memory connect through a bridge.

And this is where the GPU will also be connected to. There is an interface with the bridge. And

then there are certain functional units, which will be slowly progressing. What is important to

note here is in typical in the GPU, you will have a hierarchy of processing elements at the high

level. We have what we call as simultaneous multi processing units, the SMs right? And inside

this SMs, you have specific

Processors, which are known as the scalar processors, the popular names for these are SM stands

for streaming multi processors, and SP stands for. There are two well known terms that are

generally used streaming processes. So they're not streaming multiprocessor streaming

multiprocessor is SM, the higher level in the hierarchy, and at the lower level, each SM contains

multiple instances of scalar processors.

Or in some books you will find the name streaming processors. So multiple instances of this

streaming process. And of course there are other units like for the for the memory the cache the

shared memory which will be covering one by one.

(Refer Slide Time: 24:48)

So, coming to this idea of GPU. So, if we take an example GPU architecture as we know that

there has been an evolution of GPU architecture in the last decade. And there are several well

known families of GPU architecture. So we start with one of the earlier ones, was also very

popular, the Tesla architecture. So, the earlier figure depicts a GPU, the GeForce GPU, with an

array of 128 streaming processors, or scalar processors course, as we discussed earlier.

And they are organized as 16 multi-threaded streaming multiprocessors. So if we go back to this

figure, as we said that there is a hierarchy here inside this hierarchy. I have 16 number of what

we call us streaming multiprocessors SMs inside each of them. We have eight scalar processors

or streaming processors, the SPs. Overall I have got 128 streaming or scalar processor. 2SMs

together are arranged.

As an independent processing unit called texture /processors clusters texture processor clusters,

or in some books is also known as thread processing clusters. So these are clusters. I have these

clusters, eight of them. Each of them contain this to SPs, and inside. Sorry, I have got 16 of the

SPS. 16 of the SMs, each of the SMs contain 8 SPs. So in total I have got 128 SPs the

arrangement each, each SM contains eight SPs 2SMs together constitute one TPC.

(Refer Slide Time: 26:43)

So, what really was the function of earlier GPUs. So, earlier GPUs were developed with a

specific idea in mind that they should be there to accelerate the logical graphics pipeline. So

what's the logical graphics pipeline it represent the standard API, which is used for generating

graphics for a computer. For that, there are a sequence of functionalities that need to be executed.

And this is what the picture says, so we have the input assembler.

Followed by the vertex shader block, followed by the geometry shader block setup and rasterizer,

and then the pixel shader and raster operations or, in some processor, also known as output

merger. Now, these are the well defined significant components of the graphics pipeline, which

together provide a standard pipeline through which computer graphics is usually render.

(Refer Slide Time: 27:48)

So, the idea is the software programs which really do that, they have a well known name that is

called shader programs. Graphics application in the GPU, a sequence of what he says, which are

grouped into specific geometry primitives points, lines, triangles and polygons. So, if you have

an application and the application will try to render the output graphics on the screen. And for

that it has to do the painting essentially.

It is to execute the computer graphics algorithm to create the bitmap image of that for that. It will

require to execute this kind of specific graphics pipeline, which has got the six logically divided

the parts for that. There are certain parts, which represent specific programmable parts, this is

these are, these are the ones that we have highlighted here in blue. These are the vertex shader.

The geometry shader, And the pixel shader.

So what are what is a Why is this sequence there since we have discussed that the graphics

application will send this sequence of vertices. Now, these vertices needs to be processed by the

GPU, the vertices may be grouped into specific different geometric primitives, they can either be

in the form of specific discrete points. They can be in the form of mathematical objects thus lines

or triangles, or polygons.

The input assembler is the block, which is going to collect these vertices and the corresponding

primitives. The vertex shader is a software program, which will map the position of the vertices

to the screen. Because finally is the screen where they need to be rendered? So this would mean

a specific change in a specific change in the values, there will be a scaling and all that. And it

will also mean altering their position color or their orientations.

After these vertex shader programs execution, comes the next colored block here, which is the

geometry shader. Now the geometry shader program will operate on the geometry primitive.

That means. I mean, it is going to operate on the specific graphics objects like lines and triangles,

which are going to be defined again of course as we know by multiple parties as together, and

they will change them or generate the original primitives for them.

So usually, what is these shader programs I mean, how are they written and all that because as

we can see that they are the sequence of three shaders, vertex geometry and the pixel shaders,

right? So essentially the shader programs that data's for style of computation that means multiple

Parallel threads can work on different data points and do some computation in parallel. So we

will let us do something like we stop here for this lecture and from this shader program and this

Tyler computers and is from where we will pick up in the next part. Thank you

