
GPU Architectures and Programming

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology-Kharagpur

Lecture # 46

OpenCL - Runtime System (Contd.)

(Refer Slide Time: 00:33)

(Refer Slide Time: 00:34)

Hi, welcome back to the lectures on GPU architectures and programming. So I believe in the last

lecture we provided you with the basic open CL runtime overview. And we gave an example of a

complete open CL program enqueuing the host code primarily the host code I would say like

how to compile the code how to build a create the kernel, the different data buffers memory

objects, and finally, set up a context and create command queues and then execute the kernel by

issuing suitable read it read kernel launch and write back and find out final rate commands and

all that.

(Refer Slide Time: 01:02)

So with this, we will now move over to the next topic, which is again, related to synchronization

in open CL so if you remember in work coverage of CUDA programs also we had significant

coverage on synchronization among threads. And it is a far more involved topic I would say,

when we are talking about open CL synchronization. So here, it primarily refers to mechanisms

that will constrain the order of execution between 2 or more units of execution like.

So just like if you remember in CUDA the synchronization primitive we are primarily using was

seeing thread using which we could actually synchronize among threads inside a thread block.

And if we wanted to actually have global level synchronization that has to be managed through

multiple launches of kernels through the host program. So equivalently in open CL, we have this

concept of synchronization of work groups, which essentially constraints on the order of

execution for work items inside a single work group.

So these are concepts, which is essentially equivalent to thread block synchronization in CUDA.

And, of cworkse, we also have this idea of synchronization of commands, which gives

constraints on the order of commands launched for execution. Because if you remember in open

CL, at the end, what you have is a command queues which are being set up with this sequence of

commands to be executed.

So you do not really launch commands directly, but rather, you are just issuing commands

enqueuing them into the queue. And it is the runtime systems job to pick up commands from the

queue in that order and execute them. So you also have this scope of synchronizing the order of

commands launched.

(Refer Slide Time: 02:53)

So let us first move into the idea of group synchronization. So this is essentially about

synchronization between work items as we discussed inside a single work group. So, for this the

open CL function will be using is barrier, and for the barrier function takes this cl mem fence

flags type variable and from open CL 2.0 onwards, we also have this is a command for work

group area.

So, this is a similar command, but it provides you the notion that this is about synchronization

inside the work group. And for that you have this a flag as well as another field called scope. For

now we will just go with the flag. Now, what are the options for flags? First of all, again, I will

just repeat the barrier command or the work group barrier command equivalently open CLs

current version, they will be synchronizing work items inside work group. In the flag part, you

have 2 options.

One is this clk local mem fence and you also have this clk global mem fence? The issue with this

main fences with that what is the area of the memory you want to make visible to the work items

for synchronizing? So whether it is the local memory or the global memory upon that it depends

what flight you are willing to choose. All work items in a work group must execute the barrier

before they are allowed to continue execution beyond the barrier.

And it must be of cworkse, encountered by all work items of work group executing by the kernel

or none at all. Now, this is very important. First of all, let us understand that you have to have it

the primary semantics of barrier is that every work item inside work group will reach the barrier

and once all of them received only then the any work item can go beyond work group. The next

important thing is you may be thinking well if I have a press the barrier inside and if else block,

then maybe some of the work items will be facing the barrier.

And that was work items will be bypassing the barrier will that is not true the semantics are very

at ease that you have to write the code in such a way that either all the work items are supposed

to execute the barrier, I mean, they have to encounter the barrier, or everybody will bypass them.

Because the barrier by it is the runtime system, by his definition of the barrier could wait for all

work items to, to be encountered.

If it is partial, then it will be working continuously, whereas the other work items are not even

facing it because of divergence that will create a deadlock. So the support up to the programmer

to write the code in such a way to ensure this last property.

(Refer Slide Time: 05:52)

Now, just to recall here about the flags, so I believe the barriers, semantics is clear to you use the

synchronization primitive just like CUDA, but also like in CUDA, the synchronization primitive

the way you use it, you have to make sure that either all the problems have threads in the work

group encounter it or none at all. So that you can avoid the deadlock issue. Now, regarding the

fence and the flag, as I said that if you said the flag is local main fence, then you make all the

updates in the local memory visible to the fence in the work group.

And similarly, if you set it as global mem fence, then you are essentially sitting in making all the

updates in the global memory visible to the work group. So that actually provides you an

additional flags, you mean depends on what you are sitting here you are, directing them system

that what you really want, what kind of behavior do you want with respect to the memory so the

barrier is controlling the way threads synchronize and the memory fence and we are sitting

controlling the memory is being feasible at what level to the synchronizing threats.

Also, I would like to add that in, in the newer version of work group barrier, there is an

additional flag here called scope. If you are interested you mean if you want to go more into the

more advanced concepts of open CL, well, you can go there. I mean, get into that, that and figure

out what is this idea of scope that comes with the flags for mem fence. So now we proceed to

some example on one group synchronization.

So, let us take this example of a simple kernel. So, first what you do is, you execute the simple

get global ID and get local ID calls. Using which you are caching data from the global memory

to the local memory. So I hope by now you are familiar with this, get local ID and get global ID

calls get local ID calls in open CL. Essentially, they are helping you to figure out what is the

global ordering of the threads and what is the local ordering of threads inside the work group.

Using the local ordering of threads you are figuring out in which position of a local buffer, you

would be writing a value. So once you have cash the data you want all the all the threats to reach

these barrier to me to wait at this barrier until all the threads have done with the previous job

assigned to them. And after this barrier synchronization with respect to the local memory updates

here, you are going to the next part of the code where you perform some operation and save the

output in the buffer.

So here you have defined some operation that you calculate an address based on this get local ID

person, get local ID, and then you do something over that value so there is some functionality

here, but we are just trying to show that how things are going on. So, if you look into the figure,

for this kernel, you have launched multiple while groups, we are trying to convey this fact that

this position of the so this is the timescale I would say, in this y axis.

And you have all the while groups being dispatched. As you can see that the barrier is being the

synchronization is actually happening at different points of time, across all groups. But inside

every work group, all the threads have to hit the barriers synchronize and then move forward.

(Refer Slide Time: 09:58)

So, this is one synchronization primitive using barriers that you can do. Now, there are several

other primitives we will see, one of the important things is open CL events. So that brings us to

this notion of event objects. So an event object is used to track the execution status of an open

CL command like as you know, that every open CL every execution is like enqueuing a

command in a command queue.

Every commands execution will have the corresponding status and the status is can be pulled by

an event. So Open CL API calls and enqueue commands to open CL command queue and creates

new event objects, which are returned in the event argument. In case of an error, if there is an

error in in keeping the command in the command queue, then the event argument will not return

an event object but otherwise it should be successful in returning an event object.

And the API can query the value of an event from the host. For example, you can track the

progress of a command by inquiring to runtime system about the status of the corresponding

event the value of the corresponding event.

(Refer Slide Time: 11:11)

We will see some examples. For example, for every in enqueue command, they are these are the

following valid status that that Open CL runtime system will provide for example, it can be a it

can have a CL queued. So, just to summarize, every open CL command will pass through these 4

statuses. And for this corresponding to the status, you can define an event so that means for

every event, it can be attached to a command and the event will have disposable it whether a

command is skewed whether it is submitted, whether it is running or whether it is complete.

(Refer Slide Time: 11:51)

Now the Open CL API relates to the event object and there are a few ways in which you can

actually do the following functions using which you can use in an events. For example, CL

create user event is used to create a user level event object. The status of an event can be set by

CL set user event status, it will set the execution status of work user event object. CL wait for

event will wait on the host thread in the host side thread for commands identified by the event

object in the event list to complete.

So I mean, there are there may be events for which you are waiting and you want to implement

that kind of behavior that can be done by CL wait for events, CL get event info, so this is like a

query function which will return information about some event object. Now CL said even

callback is related to registering of callback functions for specific command execution status. So

there is usage of callback functions is they can exist as synchronously.

So, suppose you want that for a specific command, you want to figure out whether it has reached

a corresponding status or not some specific status, whether it is completed whether it is pending

or not. And you want that whenever that event happens that it has reached that specific status,

then some thread, some specific callback function will be asynchronous, we launched in the host

site as a separate thread.

Now, this registered callback function will be called when the execution status of the command

associated with the event changes to some specific execution equal to or pause the status that is

specified by command exists at us. So just to make it very simple, using this function, CL set

event callback, you can command a system that worked. I want some specific function called a

callback function to be launched when the execution status this command becomes some things

that I specify.

So when that equality is holding, that means the execution status of that command is equal to

whatever I have specified, then this specific callback function will start working. Now, why is

that normal function not a normal function, but I call it a callback function because it will

execute because the host does not wait for it, it will be called and it will start executing

asynchronously in the host side will understand it at the end with some examples.

(Refer Slide Time: 14:31)

So here I am just trying to introduce the definitions and concepts. Now, the next important thing

that why do we use this idea of events we will figure out that they also help us to provide

synchronization of commands. Now, they can be performed by in terms of distinct

synchronization points. A synchronization point between a pair of commands ensures that results

command happened before command this launched you may always want that I have include

commands in multiple command queues.

But the execution of some command in someone queue should depend or should have should

only start when something else in some other commands you may have happened, you may want

some such dependencies to be satisfied. How do you do that? Well, you have to synchronize

between commands. So let us try and understand this is different from synchronization among

threads, like we have done in CUDA, and like we have seen as examples in open CL.

But here it is a bit different concept. We are trying to synchronize among commands that have

been enqueued in the command queue. The synchronization points occur between commands in

host command, queries, command queues, and between commands in device said commanders

so synchronization points will occur again, I will repeat between commands in host command

queues and between commands in device that command queues will see some examples between

them.

And all open CL functions that enqueue commands, return and event that identify the status of

the command. Like we have this earlier that every command, I mean, every command, which is

being enqueued for it, an event is returned. And by pulling that event or by querying that event, I

can always figure out the status of execution of that command, the value of this event, which is

being associated with the command, while enqueuing, the command will be set to CL complete

when the execution is done.

Now, this is very important like so, I will just summarize that all this idea of events which have

we should have been defining the primary reason is you are enqueuing a command at that

moment you are it will return the event that events will be one of this based on the execution

status of the command. And when it is everything finishes, you will it will reach this CL

complete status.

(Refer Slide Time: 16:58)

Now this synchronization points that we have defined in open CL they include the following for

example, completion of a command a kernel instance is complete after all the work groups in the

kernel and all of its child kernels have completed with all work groups must complete. So, or and

we need to understand that inside a kernel you will be launching child kernels those also has to

be completed. Now, only when that is done this is signal to the host, parent kernel or other

kernels within command queues, I mean, so, for every kernel there may be a parent kernel or

other kernels.

So, this is signal by the corresponding event that was defined while in enqueuing this kernel

execution command. And so, this finishing of the task of execution of the kernel is signal to the

host on the parent kernel and it is done by stating of the event associated with the kernel to CL

complete. So, just to summarize, you have launched a kernel, you doing that enqueuing operation

of the kernel, you have got an event automatically associated to it or you can actually specify

which event as it to it.

That event status will be set to CL complete when all of work groups of the kernel and also if

there were any child kernel whether all those were most of all those child kernels everything is

complete, only then that event associated with the enqueuing of the kernel will be set to CL

complete. Now we also have this other function CL waits for events and this waits on the host

thread for commands identified by event objects independent list to CL complete.

Event specified in the event list will primarily act as synchronization points. So I believe this

should not be there. So just a minor correction. So, when I have CL wait for events this function

will wait on the host. So, when I have this function the second last one here wait for events, this

is simply I mean suppose you have made it to wait for a set of events that would mean until and

unless those event objects will reach this status CL complete individually all the all those events,

then only this function job is done otherwise it is still waiting there.

So that is another synchronization primitive. So just to understand using completion of a

command, you are attaching or you may possibly attach your event definition to a kernel launch,

when that kernel launch and his child kernels have all completed. You get that event being

attached, we are being automatically assign the CL complete flag by the runtime system. The

other option to synchronize would be a code you have a CL wait for events function and you

provide that function with a set of events to synchronize on.

When the runtime system ensures that those set of events reach the status seal complete, then this

function will release and lead the execution move forward.

(Refer Slide Time: 20:29)

Now, apart from this, we also have this notion of blocking commands. So these are these are also

synchronization points because we have to understand that if a command blocks that means until

unless that commands execution is finished, the program straight cannot go forward. So

command execution can be blocking or non-blocking. If it is a blocking function, then the events

API functions that include commands.

Do not return until a command has completed some of the blocking commands are saying CL

enqueue buffer enqueue read buffer and enqueue buffer both of them if they are called with the

option blocking read and blocking, we said to CL true. So, as you can see that when you were in

making this enqueue commands have read buffer and write buffer like defined earlier, they also

had a field where you can set this flag of blocking read and blocking respectively.

And in those cases, they are blocking commands that means if you do not set it, then they will

fire a synchronously that means without this read buffer or before finishing the host program and

move forward to the next command. Because they will just keep on happening without blocking

the actual flow of the execution. But if you said them to blocking, read or blocking, then until

unless these commands are complete, the host programs execution will not go forward.

And then you have command queue barriers. They ensured that all previous they include

commands to a command queue have finished execution before any following commands

enqueuing a command queue you can begin execution. So, you have the command queue ensures

that commands start executing in that order. But if you put a barrier in between it ensures that all

the command queue functions we should have started executing in their order they should finish

before anything out I mean after the barrier.

Even starts executing the open CL API functions for this cl enqueue barrier with waitlist cl

enqueue marker with waitlist. So these are so essentially you are enqueuing a barrier in the

command queue. And of course, you can put the barrier with a waitlist that barrier first quits for

the events in the waitlist, and then the barrier is active, and then all the commands previous to the

barrier are forced to finish before fundal commands can be launched.

(Refer Slide Time: 23:00)

You also have synchronization points defined by clFlush. So, you have clFlush, then all

previously queued open CL commands in a specific command queue or issue to the device

associated with the command queue and clFlush will guarantee that all these commands in that

command queue will eventually be submitted to the appropriate device. And of course, there is

no guarantee that they will complete after Clflush returns.

So it guarantees that all the commands that in the queues will be submitted to the appropriate

device starting from I mean, so you have enqueue them and you have submitted mean cl flushes

ensuring that all of them gets submitted to the device for execution. And then you have CL

finish. So her CL finish whatever commands have been queued, they are issued to the host

device and the function blocks until all these functions have completed.

So unlike clFlush, which is providing you a guarantee that whatever commands have been

enqueued earlier, they are all submitted to the device from the command queue CL finishes as if

it is executed and it returns successful. It is guaranteeing that whatever commands were

enqueued, and I mean, all of them have completed. So this function blocks until all previously

queued commands have been completed.

It does not return until all the previous queued commands in the command queue have been

processed and completed and so I hope this is the difference that you can understand between

flash and finish.

(Refer Slide Time: 24:42)

And then for the purpose of synchronization, as we discussed that you have command queue

barriers and you have worked on an event primitive and command to barrier ensures that all

previously queued commands have finished execution and they have updated whatever memory

objects or memory objects for commands, which will begin execution afterwards. So, this is the

primary reason why you will like to have barriers like the command queue ensures that you start

issuing commands in that order.

And if you put the barrier, you can actually ensure that though they finish all the commands that

have been include the actually finished and they are before going forward and this can be used

for important reasons, for example, as has been specified here that you suppose you need some

memory objects to be set up before further command queue execution goes forward and you

want some memory objects to be updated and ready by some kernels to have executed earlier and

only then you will be executing the next kernel.

This kind of execution we have here you can ensure by using the command queue here barriers.

Now the important thing is inside a command queue if you put a barrier it will help you to

synchronize between commands inside a single command queue and not across multiple

command queues. Now, the other thing is waiting on events all open CL API functions that

enqueue commands, they return an event that identifies status of command.

Like we have discussed earlier, that events are returned by the enqueuing command operations

only and the events can have values starting from CL I mean starting from I mean waiting,

submitted and all that to up to CL complete when the event finishes execution. And finally, you

have this CL finish synchronization primitive which blocks until all previous to enqueue

commands in the command to have completed like I mean, we have already discussed the will

finish and the difference between CL finish and CL flush. So, overall these are the different

primitives that will be using.

(Refer Slide Time: 27:03)

Now, the next topic would be out of order execution of kernels and memory objects. So far we

have assumed that, you have open CL command queue, you have been enqueued them and they

can just go and execute in order. And that is not going to hold in general. Maybe we will end the

current lecture here and resume from this point in the next lecture. Thank you.

