
GPU Architectures and Programming

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology-Kharagpur

Lecture # 42

OpenCL - Runtime System (Contd.)

 (Refer Slide Time: 00:33)

Hi, welcome back to the lectures on GPU architectures and programming. So, in the last lecture,

we have briefly introduced these concepts of OpenCL programs and we were discussing the

OpenCL execution model.

(Refer Slide Time: 00:40)

So, continuing that will slowly introduce the different OpenCL concepts one by one. So, what

will come first is the OpenCL context. So, we are starting with the execution model of programs.

So, what is the context? So, essentially our context is nothing but an abstract container that exists

in the host side and it includes the following resource definitions. So it is like object we said an

abstract object and abstract definition and its context containing information the following

resources.

That is first of all the devices that it will contain the information about what are the OpenCL

devices which had to be used by the host and how to access them, it will contain the different

OpenCL functions that are to be run on the respective OpenCL devices and it will contain this

program objects. So essentially what our program is the program source and executables that

implement the kernel, so you write a kernel.

Now, from that kernel, the OpenCL runtime system will build a program object and then it will

also contain the memory objects. So the set of memory objects which are visible to the host and

OpenCL devices. So in a nutshell, so we are trying to define how OpenCL programs execution is

set up. It is all based on this definition of a context and the context captures what am I going to

execute, which are the kernels, which are translated into a program objects.

And they are going to use data from again the memory model, which is which is kind of known

to the host in the form of memory objects and the devices like which are the actual assembly

architectures where these kernels will be executing.

(Refer Slide Time: 02:34)

So, a context is something that gets created by the OpenCL API I mean, as essentially, you have

to write a suitable host program, and you have to call suitable functions from the open

underlying OpenCL API through which have to come we have to actually create the context.

Now, it is useful primarily for executing the kernels getting their results back from the devices

using those devices for executing more kernels in other devices and all that.

So, essentially the context inside I mean, whatever coordination one will do, I mean, we

understand from our basic knowledge and GPU programming now, that the host device is

actually responsible for orchestrating the execution of kernels in different GPU devices. So,

coming to OpenCL, the similar concepts are actually going to hold. So, the host problem is the

host site code is actually orchestrating the execution of this kernel objects on different devices.

But all these things are happening inside the definition of this context is also managing the

memory objects it is deciding which memory object is accessible to which device and all that so,

essentially the context is an abstraction which binds devices with programs and memory objects.

Now, limiting the context to a given platform helps to fully utilize a system comprising resources

from a mixture of vendors this is a useful thing.

Like why do we need the definition of a context, the primary reason is because of the OpenCL

platform model. So, it may always have been that you have built a large compute system for

multiple different kinds of devices coming from different vendors, let us say MD, let us say

somebody else, they are all connected to the PCI Express Bus. Now let us understand that each

of them may be OpenCL vendors.

So what they will do is each of them will provide the underlying ICD Installable Client Driver

conforming to the OpenCL specification, but they are all specific for each vendor. So a

collection of devices from a specific vendor for them. If I define a context, then that context will

use that vendor applied ICD for performing your execution. Some other context I will define for

some other diverse set of devices from some other vendor and I can have the host program,

coordinate executions in different devices, where each of the devices are mapped to different

context.

So, inside the context, I have the memory definition that device definition pro kernel definition

and program execution going on I can have another context where another set of kernels are

executing and top level program you can actually manage multiple contexts executing on

different vendor server supplied platforms. And it can help these different contexts communicate

data among each other for performance benefits are getting more terrorization.

So the basic idea would be that you want to have an obstruction through which you can actually

link up things from different vendors in a coherent way, and still proceed with billing something

big.

(Refer Slide Time: 06:06)

The next important concept here will be what we call as the command queue. So when we are

talking about context, as I said, it is basically an abstraction through which I am trying to define

how an OpenCL program, we look at the memory, how opens CL program, you look at a device

and all that but there has to be a specific formalization that the devices are going to execute this

kind of commands in this specific order.

And how will that sequence of commands coordinate among each other? So for that, the top

level host let us understand that difficulty with the host, the host is trying to manage a set of

devices. As I said in the worst case that devices can be of different vendors. That problem is

solved by bunching out devices together into a set of context. So the host has to manage a set of

devices sitting in different contexts. Well, that is fine. But when the host is trying to dispatch

some action for each of the devices, the host needs some mechanism for doing that.

So what the host does is it creates our data and other data structure called command queue

through which it can submit instructions that to our device that you execute a kernel, you get this

data back, you use this data as an input. So these are all elements the actions which are kernel

will perform, which a device will perform, and in what order it will perform that is orchestrated

by the host through a command queue. So all the hosts does is that it replace commands to the

command queue, which are then scheduled into the devices within the context.

A device will have its own command queue and the kinds of commands can be different. There

can be kernel execution commands, they can be memory transfer related commands for the

device and they can also be synchronization commands. Now, these queues can execute both in

order as well as out of order. The host can also specify that for some device, whether the

commands that are queued up in the command queue of the device whether they will execute in

the order in which they are queued up or they can execute out of order.

(Refer Slide Time: 08:22)

Now, so, we have understood what is the command so, essentially it is one of these following

things like kernel execution and memory transfer instruction or a synchronization command. So,

these are the different possible commands that our hosts can issue to a specific kind of device.

Now, once this command is issued, it can go through the following well defined states that the

OpenCL runtime system understands.

So, a command will be queued. The command will be submitted from the device it will be de-

queued and submitted to the device. It is ready to execute. It is actually running the command

ends and the command gets completed. So these are all the different possible status messages for

a command under execute, which is the inner from the lifetime when it start sitting in a queue up

to the point when it gets completed in its execution.

(Refer Slide Time: 09:18)

Now in OpenCL synchronization execution model, the other important thing from our

perspective would be synchronization. So, what is synchronization? So, we understand that in

our data program, we often will require threads to synchronize at certain specific points, which

are the barriers right for example, in CUDA we had the synchronized constraints, similar, you

know, OpenCL like, we have thread blocks are while groups containing execution of work items

and work items will often like to synchronize among each other.

So, the synchronization would refer in this case to mechanisms that constraint the order of

execution between two or more units of execution. So it is possible to do while group

synchronization. So this essentially means constraints on the order of execution for work items in

a single work. So this is kind of similar to idea of sync threads in CUDA programs. So a sync

thread would synchronize all the threads inside a thread block.

But not across thread blocks. Here in this case, I can perform in similar way I can synchronize

work items sitting inside single work group. The other notion of synchronization is command

synchronization. So I can put sensors synchronization primitives inside the command queue. As

you can see that this is one of the possible commands that can be submitted by a host program in

a command queue. So I can give a kernel execution command I can be transported at command

and I can also give a synchronization command.

So when we talk about a synchronization common that would mean a constraints on the order of

commands launched first in execution. So, that would mean a suitable synchronization command

will be enqueue by the host on the command queue. And it will restrict the order in which

commands are going to be launched for execution.

(Refer Slide Time: 11:15)

Now, as we have been discussing that in OpenCL, we define that execution model and also a

memory model. And so, this is a picture of the memory model. So, you will have host memory

and so, that is a host side memory and host side compute environment, which is we have here

from the host, you can copy data to the global memory of a specific context. Now, this is where

things become a bit more complex and different with respect to CUDA.

We need not have a single device we need not have a single GPU, I can have a rather small

collection of devices, I can among the collection of devices I can have devices could be coming

from different vendors accordingly. I What I will do as a memory object, I will define a context

as an abstraction inside this current context, I will have a collection of devices they are global

and constant memory. And I will have this notion of work groups executing on the processing

elements.

So, while group will be constituting work items, and this work items will be have access to their

private memory, the shared local memory and in the worst case, they will all have access to the

global memory in the context. So, I can have multiple devices in the context. So I can have a set

of 4 groups executing together in one device, another set of 4 groups including in other device

like that. So, to be more specific, what we have more here is the host can orchestrate execution

across develop multiple devices and they will set up multiple devices can begin group into this

abstraction of contexts.

(Refer Slide Time: 13:04)

Now, coming to the memory object definitions, so, the contents of global memory are essentially

open memory objects with used OpenCL type CL underscore name. Now, memory objects can

be of the type buffered, which are stored at block of contiguous memory and used as general

purpose object to hold the built in types like integers or floats, other vector types or any user

defined data type in an OpenCL program. And they can be manipulated light through pointers

similar to any kind of memory block access that can you can do in normal C program.

The other thing is image so in OpenCL, you have a separate memory type defined for images,

which is useful for holding multi-dimensional images up to 3 dimension. And the formats are

based on standard image formats. So like you have support for different standard image format.

So that is specifically provided targeting graphics applications, which was the original workload

domain that was targeted. And they need to be managed by functions which are defined in the

OpenCL API.

Which would mean whatever vendor provided ICD file you get as part of the OpenCL

distribution on your browser. It should contain implementations of the required functions for

reading and storing such image objects.

(Refer Slide Time: 14:28)

So if we do a summary here of the OpenCL memory model, so from the global perspective, in

the host, you have support for dynamic allocation. You have read/write access to buffers and

images. From the kernels perspective. You have static allocation for programs called variables

and read/write access. If you look at the constant memory segment, again, from the host side,

you can do a dynamic allocation. You have read/write access from the kernel side, you would

have static allocation and only read only access from the constant.

But, so whatever has to be defined from the host side as constant. Now, from the local memory

part again for host you have a dynamic allocation. But from the kernel side you again have static

allocation, but every thread can of course, read as well as write in its local the shared local

memory of each of the compute units and have similar behavior is also expected from the private

memory for each thread.

So, that is what you also have read/write access in the private memories, of course, for the local

and the private memory which are in the device, because this is in the inside each of the compute

units and this is inside each of the processing elements that are sitting inside the compute units.

So they are all in that device. So, the host really does not have any access to this memory

segments. This is what is supported by the OpenCL kernels that are submitted to the respective

devices.

(Refer Slide Time: 15:57)

So, if we come to the programming model, so you have a data parallel model, of kernel

execution where you define the computation in terms of a sequence of instructions that are, of

course applied to multiple elements of a memory object. So that is how we have been writing

usual C code and using usual CUDA code. And the alternative is task parallel model. Where do

you define a model in which single instance of a kernel is executed independent of any index

space. So this is also something we will look into and of course, you have support for a hybrid

combination of both these models.

(Refer Slide Time: 16:36)

Now, in OpenCL, you have support for a hierarchical data parallel programming model, which

would mean in the explicit model, the programmer defines a total number of work items to

execute in parallel, and how the work items are divided among the work groups. And you can

also have an implicit model where the program will only specify the total number of work items

to be executed in parallel.

And the actual way in which the work items would be divided into the work groups will be

managed by the OpenCL implementation. Now, this is important, this essentially means that as a

programmer you can choose to explicitly specify the hierarchy of work items and while groups

or you can actually let the runtime system take care of that, so, that would be the implicit model.

(Refer Slide Time: 17:29)

And this is logically equivalent to executing a kernel on a compute unit with a work group

containing a single work item. So, this is more about the task parallel programming model. So,

logical if same as like executing a sequential task and the parallelism is expressed by vector data

type implemented by the device and you support in giving you can just also into multiple tasks.

(Refer Slide Time: 17:59)

So, pleasure the introducing the name same will of course focus on this later on. Now, coming to

this OpenCL program structures, like how really OpenCL program is ordered into different parts.

But for that, we will first see that there are different supports in a typical OpenCL program. The

first part will define what we call as the platform API. And the second part will deal with what

we call the runtime API. So first of all, let us understand what is the platform API? Because then

we will see that how that is required to query the platform in the first day of the OpenCL force

program.

So in OpenCL runtime system, you have a platform layer API, which is an abstraction layer for

diverse computational resources and as a programmer. You have to use the query functions

defined in this platform lead API for querying selecting and initializing different compute

devices. And using this API, you can also create contexts and work use. So that is the high level

API through which you have to actually create the different objects and obstructions like context,

the memory objects, the program objects, and all that.

And also, once these, all these data structures are up and running, then you will be using

functions from the runtime API to launch the kernels and manage the execution of the kernels,

scheduled executions throughout the threads across the different devices. And utilize the memory

resources and achieve synchronization as and when required across the threats and all that so if

we just try and understand at a broad level, inside OpenCL program, the password would be to

set up the data structures.

That are there, which will be managed by the platform API and then to do the actual workflow

scheduling across the different devices which is managed by runtime API now, as we have been

discussing in a OpenCL program, you will have initial part which is the host program part and

also the kernel part. And the host program part we have a set of different steps to execute. And

this is kind of a much more I would say, a bit more complex.

Then, normal CUDA was program where all you need to do is just define the basic variables and

then define the setup the memory space for the GPUs and launch the kernels. The reasons are

also something that we will discuss, but first let us understand what are the different steps? That

OpenCL host program has to perform. The first thing it will do is it will query the different

compute devices through the platform API and try to figure out the way the devices are arranged

they are from which vendors.

And all that so, I mean, the query phase of course, I mean you if you know your executives and

all that you can write an OpenCL code, which will not require to do this query and all that. But

let us understand that we are trying to line we are trying to understand what is the generic way to

write OpenCL programs, which can execute on any open source supported device. So for that,

initially, the program that you write should be able to query the platform.

And get suitable values about its architecture information, which it will use for setting up the

different memory objects and which it will also use to schedule the work items and all that. So

using this query phase, you are first learning about the parameters of the underlying platform.

And whatever you learn, let us say the number of devices from different vendors and all that that

are useful for creating the context of execution as we have discussed earlier.

Inside the context, you will next be creating the memory objects to the context and then the next

step will be to compile and create the kernel program objects. Now as you can see, this is also

part of the runtime system. This is also supported by the runtime API. But these are all activities

that are to be written in the first program itself. So now this seems a bit weird that we are saying,

we have a program we have you we are we have first set up the context.

We have created the devices and set up the context and now we are seeing that, we will have

further commands in the host program to create memory objects associated with context that is

also fine. But the next thing is we will have compilation commands in the host program for

combining the kernel code that is also going to come after those programs. Now, that is a weird

thing because till now, we have been looking at things like we will write the code and then we

will use a compiler to compile it but let us understand here.

The compilation process has to be managed by the host program and the way the program will be

executed with will be managed by the runtime system. So the entire thing starting from I mean,

starting from basic compilation to setting up the memory objects and using these compiled

kernels to issue commands to the command queues, everything is performed by the host

program. So this makes an OpenCL was struggling a bit more complex.

But at the same time, the structure of most of the OpenCL host programs are very similar. So

once we are acquainted with one, writing another OpenCL host program is quite easy, because

most of it is going to be a copy paste job. But, we need to understand what are the different steps

so the takeaway at this point would be that the first program is not only responsible for declaring

memory objects declaring inside the content, binding them to context.

But also for doing a runtime compilation of the different kernel program objects, and then,

including the kernel launch commands in a specific order into the command queues. So, that also

means the host program is also responsible for defining the command queues in a pod device

manner. And in giving the different kinds of commands like data transfer commands, can launch

commands synchronization commands all of them in the command queue.

And at the end of after that the next step will be launching the kernels through the runtime

system. And once the kernels are finished their execution and the results have been properly

computed to clean up the underlying resources, which were occupied. I mean, these are the

underlying resources that the open source objects were occupying. So this entire orchestration of

computation activity memory object definition activity command, including activity command

execution, activity, synchronization activities, and the final cleanup.

This entire thing is managed by the OpenCL runtime system based on the query of the platform

and the creation of context which is support supported by the platform layer. So these are the

different phases through which a typical host program an open source program would go

through. And so then the question is what is happening with the kernel the kernel is a simple CL

program with certain restrictions and extensions.

And so, that would also be there about the host program, I mean, the point I was also trying to

make multiple times again I would say that the host program will be also responsible for runtime

compilation of this kernel problems.

(Refer Slide Time: 25:31)

So, today will end with just a loop on a loop, and a simple OpenCL kernel, which would be our

most popular vector at kernel. So on the right hand side, I have vector at kernel CUDA on the

left hand side I have a vector at kernel in OpenCL. So as you can see, like we discussed earlier,

the global keyword in CUDA gets replaced by underscore in 1 side only in the kernel keyword in

OpenCL and here you had the input parameters and output buffer parameter.

And the size similar things, so, you have A, B and C, but they also come with this global

keyword in case of the OpenCL, the OpenCL variables, if you go back to our earlier discussion.

(Refer Slide Time: 26:32)

So, when we are talking about this, we had this global variable declaration here and that would

mean that though they will be defined in that divisors global memory, and the output will be

computed again in the device each specific devices global memory. Now, coming back to the

CUDA code you see that the first item was to compute a global thread id so this was all usual

computation i equal to thread id x dot x plus log dimension id x dot x multi block id x dot x.

And then based on the value of id being said the range, you are computing a normal C statement

which is C i = a + b i to here in OpenCL code, the last 2 lines are exactly the same, because

fundamentally it is a C program with an which its own definitions of OpenCL types, data

structures and runtime primitives. But look at the way i is computed, you simply have a call to

something called a get global id function is providing you the global id global id fellow for this

thread.

The corresponding OpenCL work item and the work item will find will execute this edition for

this specific value of i. So that is one good aspect here, you need not write this line time. And

again, rather you just figure out what is the global id using this kind of function. So you have

similar functions like great local id to get the id inside the thread inside the wall group. And so

the global id will give you the actual position inside the global arrangement of threads that we

have defined.

And the 0 will signify that this is just in the first dimension that we are talking about and this is

not a multi-dimensional kernel. Now, if we write 1 or 2 things like that will be we will actually

talking about finding of the global id specifically in that dimension. So in case you are trying to

linearize a multidimensional kernel, there are additional OpenCL, global kind of commands,

which we will be discussing later on. So with this minor introduction to writing OpenCL kernels

will end this lecture. And then next lecture we will look at the skeletal structure of OpenCL host

program. Thank you for your attention will get maximum. Thank you.

