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Hi welcome back to the lecture series on GPU architectures and programming. So if you 

remember in the last lecture we explained in detail the idea of thread level coarsening and we are 

looking into some examples of block level coarsening. 

(Refer Slide Time: 00:39) 

 

So just a small point we like to make before getting into further with the block level coarsening 

example. So if you remember in the thread level coarsening we talked about what is the 

minimum stride length and we said that it should be greater than the warp size. So just to clarify 

a bit that I mean of course we understand that the basic idea is that it should ensure whatever was 

the original global memory transactions and coalescing behaviours they should warps fine. 

 

Just to clarify why we will I mean clarify further on this consider this example that you have a 

warp of threads. So this is one warp and it was originally accessing a consecutive data elements 

now you have coarsened them let us say by some factor of 2 and the stride length is not greater 

than the warp size. The stride length is let us say 4 so if it was greater than the warp size then it 

the thread should access the original consecutive data elements followed by. 



 

So this is the original consecutive 32 data elements in one global memory transaction and then 

since if the stride is 32 then it will access the next 32 consecutive data elements in a next 

transaction that is perfect coalescing activity. Now if the warp size the stride is still 4 than in the 

first transaction it is bringing the data like this the original one global transaction. But what more 

does it want each thread now once the data sitting at a offset of 4 right? 

 

So in the next transaction is going to bring the same data starting with an offset of 4 his much 

right. So in the next global money transaction is going to bring so sorry starting it should the 

glitch money transaction. So in the original behaviour this was the first transaction this was the 

second transaction. 

 

But now this would be the first transaction and the second transaction let us say the offset is this 

offset is this the second transaction would be something like this. Now see there is lot of 

commonality in the data points. So we are actually losing out on the coalescing behaviour in the 

global scale looking at all the threads in the kernel because there is lot of reuse happening we are 

not able to cover more number of global memory elements through a perfect coalescing 

behaviour that was achieved in the original. 

 

Now this can be easily alleviated if we increase the stride from 4 to 32 which is the warp size 

because then there will be no extra redundant global memory transaction or bringing data and 

perfect coalescing would be achieved. So this is one point we wanted to clarify about thread 

level coarsening and then let us move to the example on block level coarsening we are talking 

about. 

(Refer Slide Time: 03:41) 



 

So the first idea about block level coarsening was that since the threads will be picking up 

activities from blocks sitting at a specific stride length considering coarsening factor of 2 we are 

going to compute 2 global threat ids in this case its i0 and i1 and they are both corresponding to 

thread Ids which are sitting at the same offset value of tidx.  

 

So we compute only 1 local thread id and we use that single local thread id to get multiple global 

thread ids from different blocks since we are using a coarsening factor of 2. So you multiply the 

block idx by 2 wherever it occurs and since we are using a stride of 1 you should have this 2 

block idx+1 for taking the thread from adjacent block right threads from adjacent blocks and 

threads with the exact same local offset. 

 

So now once I have picked up the threads the rest of the thing is quite same you are going to 

bring the data from the global memory but then there is something important earlier in the 

previous example of thread level coarsening you are coarsening the block right you are 

coarsening the threads by using activity inside the block.  

 

So effectively the requirement of the each block was remaining same right the compute 

requirement of each block was remaining same the threads inside the block we are getting 

thickened and the number of threads inside the block were decreasing by the coarsening factor. 



But now you are creating you are creating a block with more amount of activity with respect to 

the original block and you are not reducing the number of threads right.  

 

So when we talk of a reduction kernel or for that matter any kernel the resource requirements 

that the block level is increasing right. So again I will just like to highlight in the original thread 

level coarsening the resource requirement at the block level was kept constant the thread level 

requirements were increasing. So the SM could accommodate more number of thread blocks 

right in case the part thread level resource requirements were not too high but here what is 

happening is the thread level activity is increasing but the threads per block is not decreasing its 

constant. 

 

So effectively the block level activity is increasing for example since I have a coarsening factor 

of 2 for a reduction kernel. Now each thread is shared inside the block is bringing in effectively 

double the amount of data and so we will need 2 share memory locations. So we are just 

allocating to save memories is rate as 0 as data 1 each of size equal to their new block size right 

and the block size of course is the same because we do not decrease the number of threads per 

block. 

 

So now for thread id the first thread id I am just using the global threat id i0 to load data in s data 

0. I am using the global threat id i1 to load data in the other shared memory which is s data 1. 

Observe one thing when I am using i0 or i1 I am loading data from adjacent blocks I am loading 

the data into 2 shared memories. 

 

Since I am loading the data from adjacent blocks with the same offset I am loading the data in 

that different shared memories in the same offset. So just to highlight consider these adjacent 

blocks so these are adjacent blocks right thread block ,1 thread block 2 let us say I am loading 

data from here right the offset is tid I am loading data from here, here also the offset is same 

right. 

 

Now this data will go to shared memory s data 0 this data will go to shared memory s data 1 and 

the location in which that it I would go will also have the identical offset right. Because this 



shared memory sizes are same as the thread block sizes right. So with one thread I am loading 

data from 2 adjacent thread blocks into 2 shared memories 2 different shared memory segments 

at identical locations okay. 

 

Now once this is done you perform the reduction in each of this shared memories in parallel 

right. So all the threads would parallel load data into the shared memories then all the threads 

would go into doing the reduction. So it will do all the threads will do reduced step here as well 

as here then again in another reduced step parallelly in both the s datas and like that right. So 

earlier we were reducing in a power block basis and when we did thread level coarsening each 

thread was reducing more number of locations. 

 

Now we are reducing across blocks and each thread is doing 2 reduction steps in adjacent blocks 

by bringing the data in the corresponding share memory locations and once all the reduced steps 

of course keep on synchronizing for each stride value where the stride by stride I mean the stride 

of reduction in the original for loop.  

(Refer Slide Time: 10:15) 

 

So if you just do a small recap of reduction. So these were the different optimizations that we are 

going one write for so for reduction 1 your optimization was that you are using so there were a 

lot of problems in that basic reduction kernel. So there was interleaved addressing but you are 

not really using consecutive threads so the I mean. 



So first of all that was the problem because the warps will contain threads which are not really 

active. So the warps will also have lot of underutilized occupancy of threads that was first 

problem and then there was the modulo arithmetic which was also overhead and then there was 

divergent branches right. 

 

Because some of the warps were not that some threads in the warps would actually have no 

warps right and then you in the reduced reduction 2 step you used interleaved addressing but 

now you have to actually warps to it continue contiguous threads and that led to balanced warps 

because the threads will not diverge but still we had the problem of bank conflicts and then in 

reduction 3. 

 

So this is again I am doing a small recap of the reduction steps because this is relevant here so in 

the reduction three step what you did was you actually perform sequential addressing and you 

actually remove the shared memory bank conflicts then in the fourth step of reduction you half 

the number of threads and delegated some activity to the threads in terms of global loads. So 

each thread was practically course sent to do global loads. 

 

So this is the step from where you start increasing the part thread activity. So this is like some 

example of coarsening inside the reduction kernels itself. So you use actually n/2 number of 

threads then in reduction 5 instruction 5 you unrolled the last warp and you were able to remove 

intra warp synchronization barriers for the last warp and all that. 

 

And if you remember in reduction 6 you performed a template parameter based complete 

unrolling of the kernel based on whatever is the block size you will be generating code where 

there was effectively no loop and it was a completely unrolled version of the kernel right. So all 

the loop overheads were removed and then in reduction 7 you had multiple elements per thread 

and you launched very small constant number of thread blocks. 

 

So that was also somewhere you have increased the part shared activity significantly and it was 

requiring very few synchronization barriers right. So the point we are trying to make here first of 

all these are the reduction steps we are referencing some of these we have discussed up to some 



level of detail and you can easily find the further detail of all these reduction steps in the Nvidia 

example of reduction kernel optimization which is easily available online and which has been 

referenced in our earlier lectures. 

 

So the point we are trying to make here is with each higher step of production we are increasing 

the part thread activity significantly and actually removing lot of redundancy and unnecessary 

barriers and unnecessary loop overheads and things like that.  

(Refer Slide Time: 13:36) 

 

So the point here is that if we are actually applying thread coarsening into this different variants 

of these reductions we see that how things perform right. So here we do an analysis of how 

coarsening effects the execution time for each of these reduction kernels okay. So in this plot we 

provide the examples of this reduction kernels. 

 

So here what we have is this different reduction kernels and their overheads in terms their peak 

throughputs and how the throughputs keep on changing with the different coarsening factors. So 

this is the plot for reduction 7 and the other plots are for the reduction kernel this is for the 

reduction kernel 1 then the 2, 3, 4 ,5 ,6 and this is the 7th kernel so they are in this order sorry the 

legend in the figure is missing here. 

 



So I hope I mean you can see that with more amount of optimization the initial speed up as you 

can see in terms of throughput there is it keeps on increasing right. So this reduction 1 this 

reduction 2 3 4 5 6 and 7 right. Now observe firstly that and so here we are using a Kepler 

architecture based system tastes like a 40 curve in our system and we are applying a thread level 

coarse we are actually using 2 different kinds of optimizations. 

 

One optimization is the I mean coarsening optimization we are applying thread level coarsening 

and we are applying block level coarsening. So the first important characteristics we see here is 

that the optimal coarsening factor for all of the first 6 reduction kernels appears to be the 

coarsening factor of 4 both for thread level and block level coarsening. 

 

This is for our system and for this specific example of reduction and for reduction kernel 7 we 

see that coarsening does not really help it first remains constant or increases a bit in terms of the 

peak throughput right. So that by the way that is the index its telling you that how many how I 

mean that what is the throughput of the kernel and with coarsening is going to increase. 

 

But however for reduction 7 we see that its gradually decreasing right by the way we like to say 

that this is a plot where reproduce I mean we are actually reproducing from this reference which 

is actually highlighted here at the end. So this is from this paper and these results actually are 

given from this paper right we also have this kernel versions but these specific plots that we have 

given they have been directly taken from this paper I mean you can also try them we have tried 

these programs and the I mean it is very easy to reproduce this behaviour in your own system. 

 

Of course the coarsening factors may be it may be different but this is an example and the plots 

which you have directly getting from this reference here right. So what they are trying to show is 

how far the reduction kernels the activities keep on changing and as I was saying that for 

reduction 7 you see that there is no real effect of coarsening but for all the others it seems that 

coarsening by a factor of 4 has 5 is actually providing you the peak throughput. 

 

So this is the observation first brought out by the authors of this paper which appeared recently 

now if we try to analyse we thought that this would be a very nice example for this specific part 



course material on thread coarsening because it really brings out the effect that coarsening has in 

terms of the occupancy of the architecture okay first of all let us understand why for reduction 7 

there is no significant speed up. 

 

Now if you remember what was happening in reduction 7 in reduction 6 so first of all we started 

the coarsening of threads in terms of increasing not really coarsening of threads but actually 

increasing part thread activity from reduction 4 right. So I would not say we coarsened threads 

by we just simply delegated some activities for the threads it was not in the semantics of 

coarsening and so we will not say that for. 

 

If you see from reduce 4 we delegated some activity to the threads right it was in terms of 

performing more number of global loads right. But then it was only normal part thread activities 

so we should not say it is not coarsening but just increasing the part thread activity but that also 

increases the amount of resources the threads are going to consume in terms of memory traffic 

here in terms of storage in the registers here. 

 

Then it reduce 4 it was simple you just unrolled the last warp for reduction in reduce 6 we 

completely unrolled so these are more or less 5 and 6 or optimizations where you remove the 

loop overheads and you remove the synchronization over it specifically introduced 5 right 

reduced experiment the loop overheads but what happens in reduced 7. In reduced 7 the idea of 

making each thread warps some more is being generalized. 

 

So instead of making each thread bring some only 2 data points we can make each thread bring 

multiple more number of data points and make them do the local additions on global memory 

data. So each thread is given more amount of sequential activity in general. So let us say they are 

adding up they are bringing in data elements from the global memory adding them up and then 

starts the usual reduction behaviour right. 

 

So reduce 7 actually is a good optimization where you can select the amount of sequential 

addition each of the threads are going to do such that overall we have the perfect occupancy in 

terms of the reduction kernel right. So as you can see with each reduction step we are doing an 



optimization at some point we have reached all the possible optimizations. Now what you are 

trying to do is you are trying to increase the part thread activity so that you get the perfect 

amount of occupancy right. 

 

So the perfect amount of occupancy can be achieved if whatever is the total number of threads 

you are able to schedule in your GPUs SM you make all the threads there is this peak number of 

threads used all the SM resources maximally right. So then that is your perfect notion of 

occupancy and which it seems that with a suitable amount of with suitable choice of part thread 

activity in terms of number of sequential loads. 

 

I can tune this value and make reducing 7 achieve that perfect occupancy. Now once we do that I 

hope it is clear to us that once we are able to tune that perfect occupancy just by increasing the 

sequential activity per thread with respect to reduced 7 further coarsening is not really going to 

help because whatever is the peak parallelism to be explored is already done with reduced 7 

right. 

 

So that that explains this figure which has been reported by the this publication reference and but 

let us now try and analyse in our terms that why really these authors were able to get a peak 

tribute in the Kepler architecture for the other reduction kernels at a coarsening factor of 4.  

(Refer Slide Time: 21:26) 

 



So if you look into the target architecture and the test data set for this warp. So this is some 

analysis we are doing and maybe this is a very good example where we are really talking about 

optimization in terms of not only algorithmic optimization but also the optimization with respect 

to the architectural parameters that are there so here the device under test is a Nvidia GeForce 

GTX TITAN Black GPU for this specific warps by the authors and their GPU is a Kepler 

architecture number of SMs is 15. 

 

The SMs allow maximum active threads per SM as 2048 maximum thread blocks per SM as 16. 

So observed these are very important parameters the maximum number of active threads allowed 

is 2048 maximum thread blocks allowed is 16 the number of registers in the register file inside 

this SM is 64 K that is the size file size and then shared memory is 48 KB and the maximum 

shared memory provide allowable per block is also the same. 

 

So right and the test data size the data for which the reduction has been performed is a 512 

megabytes right. The data type is single precision floating point in this for the reduction kernel 

so that is 4 byte. So if we consider the block size for the original uncoarsened code it has been 

taken as 512 and so since the block so I have 512 for data points and each of them are floating 

point type. 

 

So the shared memory requirement for each block is also to 2048 bytes right. So this is important 

in the uncoarsened version the shared memory requirement power block is 2048 total amount of 

shared memory available in the SM is 48 kilobytes right. 
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So let us figure out what is a good coarsening factor here let x be the coarsening factor right so 

what is the block size we are saying that effectively the block size if I am doing thread level 

coarsening so I am going to reduce the threads per block so that would be reduced by original 

block size of 512. 

 

So this was the original block size 512 that would get reduced by x right 512/x is the reduced 

block size with this what would be the number of active blocks per SM. So as you can see that 

you have maximum active threads per SM is 2048 right. Now there is a maximum allowed limit 

on active threads per SM. So now it is going to be active blocks per SM would be original total 

2048 threads and threads per block is 512/x. So that would give me 2048 divided by this. 

 

So that gives me 4x right of course the other limiting factor is the maximum thread blocks per 

SM which is 16 we are just hoping that we will be reaching the threshold by this limiting factor 

otherwise you have to consider the other limiting factor also right. So for the thread level 

coarsening the shared memory requirement per block remains same as we know because we are 

we are coarsening the threads and reducing the threads per block simultaneously. 

 

So per block remain is same so what is the requirement so shared memory requirement per block 

is 512 times 4 which is 2048 byte as we have required computed earlier already and in that case 

since we know that active blocks per SM would be 4x. So what is the shared memory 



requirement overall part is same so that is 4x times 2048 byte and of course the maximum 

allowable shared memory in the SM is 48 KB. 

 

So here we have an equation so we have 48 times 1024 and that should be equal to this 4x times 

2048 byte right. So 48 KB that is multiplied by 1024. So already you get x=6 now if we put the 

nearest value in terms of I mean here if you just get the lower value in terms of that powers of 2 

so you get it as 4 since you have it the coarse you can use so since its 6 so you have to go to the 

next lower power of 2 will be coarsening always in powers of 2 like that and that would give you 

the 4 here right. 

 

So with that we see that if we choose 4 we get the part of coarsening factor as 4 here out of this 

calculation that with this value of 4 we are making a use of shared memory such that we have the 

maximum possible occupancy. If we go beyond this then what would happen is that with further 

coarsened threads the number of blocks that you can read the number of threads that you can 

really schedule they will go to be less than the number of active threads per SM. 

 

Because they will keep on requiring more amount of shared memory right. So this is a possible 

calculation that you can do for thread level coarsening but of course you can here in this 

calculation we are just using the limiting factor which is the number of active blocks per SM 

where the limiting factor is taken as 2048 you can just check whether the other limiting factor 

which is threads per block per SM is also limiting this value of x is just a take home you can just 

check it and see whether with that if I consider that constant. 

 

I hope you are understanding that here we are considering the constant of the maximum number 

of active threads and computing using that okay in that case what can be the number of active 

blocks right but we also know that with this the maximum number of thread blocks is 16. So here 

with x=4 I get this as 16 right. So that anyway would mean that I cannot go beyond this because 

with a higher factor what would happen is it may happen that you can get you can also hit this 

limiting factor. 

 



So in general you have to take care of both you can do a calculation and figure out whether if 

you just start with this as the limiting factor what value do you get and whether it hits the other 

barrier in terms of the other limiting factor which is this right they are kind of related.  
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So you can just replicate a similar analysis for a block level coarsening. So choose x as a 

coarsening factor block size is known for the original uncoarsened version of the kernel. Active 

blocks for SM would be in that case for like us like the original and so shared memory 

requirement per block you can just. 

 

So here will be what it will be it will increase by the x value right shared memory requirement 

per block whatever was original it multiplies by the x value and then shared memory requirement 

per SM would be multiplied by the requirement per block multiplied by the number of blocks. So 

you multiply by 4 so then you can just have a equation where you have this shared memory 

required per SM equal to the maximum allowed shared memory which is 48 KB.  

 

So 48 multiplied by 1024 and you get the similar calculations again right. So these are the 

possible ways in which you can also empirically derive limit on the coarsening factor. But of 

course there are other issues in the architecture in terms of nonlinear relationships between the 

different factors like interference and other issues we are not getting to that detail. We are just 



trying to provide a handle here like how you can analyse that why possibly you are reaching this 

kind of a peak performance with this coarsening factor here.  

(Refer Slide Time: 29:13) 

 

So there are several other effects of detrimental effects of thread coarsening which also gets 

exemplified with this picture. As you can see that the peak throughput we are getting with the 

coarsening factor 4 for both for thread and block level but then the peak throughput reduces for 

increased coarsening factors of 8 and 16.  

 

Now we have discussed this that with higher amount of coarsening I can have reduced 

occupancy right and the reason being the kernels resource consumption I mean increases right 

parts read in part thread resource consumption in terms of registers and share memory increases 

and that is resulting in the reduced occupancy. The other important thing is this also creates an 

increase in the pressure on the kernel. 
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So this is an important parameter which is cache pressure right so of a few words on cache 

pressure. So if you are overworking the memory cache with too many or wasteful memory 

accesses then it is a bad thing and that is the effect on the cache is used I mean modelled by this 

term cache pressure right. 

 

Now it may happen that you are reusing a cached line time and again by a single thread. So 

which is which is not a good idea for a GPU so and that can create issues. So when I am doing 

cache line reuse where for data that means 1 thread is accessing the same cache line multiple 

times its considered bad for the GPU.  

 

Because in the GPU I would like to have consecutive thread ideas inside a warps accessing 

sequential data elements and that would make that would mean a single warp makes a single 

cache line access and brings in the data rather than 1 thread bringing data multiple times in 

different iterations of a loop or similar kind of activities.  

 

So whenever there is cache line reuse there is a bad thing in a GPU unlike a conventional serial 

architecture where its considered a good thing right. So if you have a GPU kernel where a thread 

is accessing a cache line multiple times. Let us say you have a for loop using which the thread is 

accessing consecutive data elements then that is a bad thing ideally you should not be writing the 

code like that. 



But if you have if the programs nature is such that the thread is accessing consecutive locations 

then in terms of warps is going to access the cache line multiple times by the same thread which 

is good in the sequential or serial architecture but not in the GPU. Now consider that you are 

cautioning this kind of a program.  

 

So then this thread will be performing its own execution of a for loop where its making multiple 

accesses of a cache line and it will also be doing the activity of another originals or another 

thread in the original kernel and for that also it will be sequentially accessing the cache that the 

elements inside the same cache line. 

 

So if the original kernel has got lot of instances of part thread cache line reuse in the coarsened 

kernel there will be further iterations. So just if I am trying to take a picture here that suppose 

you have a for loop through which 1 thread a for a you have an active a behaviour says that 1 

thread id is accessing the same cache line for consecutive memory locations right. 

 

So in so there is one load instruction here and it is increasing with the index i and the for loop is 

iterating over i and 1 thread is looking into the same cache line time and again and it is making a 

cache line reuse for this kind of a code when I do the coarsening. So then the thread will do this 

behaviour for multiple cache lines right because it will also replicate some other threads activity 

and again do cache line reuse well it was originally doing cache line reuse only in one place. 

 

So this is bad thing in this for a first of all this is a bad programming behaviour for a GPU ideally 

this sequential access should have been delegated to sequential threads but if that the nature of 

the algorithm as I am saying. So then you are increasing cache line reuse by a coarsening factor 

which is significantly increasing the cache pressure and due to this the overall kernels throughput 

will decrease right. 

 

So there is the impact of cache pressure on a program and the coarsening will hamper it further 

right. 
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So in general I can say that if I do a coarsening in the worst case the same number of active 

threads per SM will be executing as in the original kernel. But now each thread will of course be 

doing more warps and due to its each thread doing more work. If the work is to load the cache 

line multiple times then the number of cache lines accessed will also scale win the coarsening 

factor just as we are saying and with higher amount of coarsening factors will have more higher 

cache line reuse. 

 

And that will effectively I mean walk down the SM and decrease the occupancy in that way and 

this will significantly outweigh the benefit of performing any kind of coarsening whatsoever 

right. 
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Now let us take another example of the matrix transpose kernel which we know as a its a quite 

difficult kernel and there are lot of optimizations which we have already discussed. Now let us 

have a relook into this from the point of view of coarsening. So in the single matrix transpose 

kernel each thread will read a single element from the source array and write to the target array 

let us consider the situation where we are doing coalesced reads whereas we follow un coalesced 

write. 

 

SO the cache lines are read in coalesced fashion by threads in the single warp because we are 

doing coalesced read. So there is no much of cache line reuse in terms of read but when the 

writes are going to happen they are uncoalesced. So writing to the different cache lines is 

happening in an uncoalesced way in multiple different warps right. 

 

So data cached for a read first of all is not going to be accessed again. So there is the thing that 

when you are reading from here you are reading in one shot right so you are reading in one shot 

after the data has been read this cache line is not going to be accessed. But that does not mean 

immediately after the read has happened the cache line will be evicted. Why? because the write 

is the read is performed quickly. 

 

But then the write is going to happen column wise in a uncoalesced way from multiple warps. So 

that the right is going to happen in different in multiple cycles right. So for the same warp so let 



us say this is the warps which has performed the read this warp is going to load the data here in 

the right in multiple cache transactions right so there will be multiple cache transactions 

happening. 

 

So at any point of time we should be saying that well there are lot of write instructions in flight 

since there are a lot of write instructions in flight and the average latency of the cache flight is 

very high and that effectively increases the amount of time for which I am unable to evict the 

data from a cache line. 

 

I hope this is clear as long as I am not able to read as well as write well the data column wise I 

cannot evict data from the cache right. Now since the writes are getting serialized in this case I 

am unable to perform you know I am unable to actually evict the data. So that creates significant 

delay and decreases at throughput. 
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So as there again as the writes are coming from the different warps the cache line will not be 

evicted until the data is written by all the warps responsible for the writing. So the read is 

coalesced write is un coalesced write takes multiple cache cycles. So I cannot evict the data from 

the cache even immediately after the read happens right. So for a coarsening factor of 2 I will 

have twice as many instructions which may be in flight at any time. 

 



So I hope you are understanding that if we consider this transpose operation already there was 

this difficulty with the write and there was this issue with the cache right now if I increase the 

coarsening factor earlier whatever was the number of instructions which were in flight at any 

time that would increase by the factor itself right. 

 

So the average time for completing the rights to the cache are going to increase it was already 

high the average time was already high the average time for the cache line eviction was high and 

since the right time will increase further due to the coarsening. The coarsening increases the part 

thread activity the coarsening will increase the amount of data to be written to the column. 

 

So we will just go back again if we coarsen what happens now we will be reading more amount 

of data in the coalesced read. So again we will be writing more amount of data in the coalesced 

write by inside the single thread I am not having the advantage of having multiple threads to do 

the writes right. So the amount of sequential column wise access here for the data will increase. 

 

So that would further increase the cache line reuse here I mean that would further increase the 

amount of time for which I cannot evict the data from the cache right.  
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So this also will create a problem here and so just as an example this was our uncoarsened 

version of the transpose kernel we have seen earlier. So you just read you compute the index in 



row wise input and you write column wise right and for this kind of a non-optimized matrix 

transpose kernel the effect of coarsening is severely bad right. 

 

So it primarily depends on how threads are scheduled on the SM and memory system. Therefore 

there is a dependency and if we questioned by a factor of 2 as we are saying there will be 2 read 

write statements so twice as many read and write instructions are required here twice as many of 

course. Because I am increasing the part thread activity by 2 and as we increasing the coarsening 

factor the number of cache line access will also increase right. 

 

Because now each thread will access more and now that would effectively increase the cache 

pressure and therefore as time taken to complete the write to the cache line increases as we have 

discussed since that time taken to complete the write increases it also increases the overall 

latency and it decreases the performance in terms of as we have seen from the picture that after I 

mean for the reduction kernel there was a decrease. 

 

But for transpose doing any kind of coarsening is going to be difficult specially for this transpose 

kernel where we have this kind of a column wise write and row wise reads right.  

(Refer Slide Time: 41:01)  

 

So this is the simple example here this is a picture again taken from the reference paper we are 

talking about that for this kind of a matrix transpose by the way this is the optimized matrix 



transpose that we discussed earlier in our lectures on matrix transpose as you can see any kind of 

coarsening is actually creating the cache coarsening and cache reissue and create increasing the 

latency of the writes and due to that any kind of coarsening is linked to a hamper in the leading 

to complete hampering of the speed-up right. 

(Refer Slide Time: 41:34)  

 

So with this we like to end our discussions on the different on thread coarsening is good and bad 

ways I hope we have performed a good architectural level analysis specifically for these 

examples. So you can really think more in these terms for other examples and the other example 

algorithms and their course learnings and here are some of the references important references 

which we used for this lecture material. 

 

These are reference on kernel fusion which we extensively used then the second reference on 

kernel fusion. These are all some of them are quite recent papers actually and the thread 

coarsening part was almost entirely taken from this predictable thread coarsening paper which 

appeared very recently and of course this is another paper on optimizations with respect to thread 

coarsening right. So with this we will be ending this long lecture and thank you for your 

attention.  


